giải bất phương trình : 9x^2+căn (4x-5)>căn (x) +25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đk: `x >=-1`.
`5sqrt(x+1) + sqrt(4x+4) - sqrt(9x+9) = 2`.
`<=> 5sqrt(x+1) + 2 sqrt(x+1) - 3sqrt(x+1) = 2`.
`<=> 4 sqrt(x+1) =2.`
`<=> sqrt(x+1) = 1/2`
`<=> x + 1 = 1/4`
`<=> x = 3/4 (tm)`.
Vậy `x = 3/4`.
\(5\sqrt{x+1}+\sqrt{4x+4}-\sqrt{9x+9}=2\)
\(\Leftrightarrow5\sqrt{x+1}+2\sqrt{x+1}-3\sqrt{x+1}=2\) (1)
ĐKXĐ: \(x\ge-1\)
(1) \(\Leftrightarrow4\sqrt{x+1}=2\)
\(\Leftrightarrow\sqrt{x+1}=\dfrac{1}{2}\)
\(\Leftrightarrow x+1=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}-1\)
\(\Leftrightarrow x=-\dfrac{3}{4}\) (nhận)
Vậy \(x=-\dfrac{3}{4}\)
a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\))
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)
\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)
\(\Leftrightarrow12\sqrt{x-1}=24\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)
\(\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
\(\Leftrightarrow x=4+1\)
\(\Leftrightarrow x=5\left(tm\right)\)
b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))
\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)
\(\Leftrightarrow-4\sqrt{x+2}=-8\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x+2=4\)
\(\Leftrightarrow x=4-2\)
\(\Leftrightarrow x=2\left(tm\right)\)
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
a, \(16x^2-5=0\)
\(\Rightarrow16x^2=5\)
\(\Rightarrow x^2=\frac{5}{16}\)
\(\Rightarrow x=\sqrt{\frac{5}{16}}\Rightarrow x=\frac{\sqrt{5}}{4}\)
b, \(2\sqrt{x-3}=4\)
\(\Rightarrow\sqrt{x-3}=4:2\)
\(\Rightarrow\sqrt{x-3}=2\)
\(\Rightarrow x-3=4\)
\(\Rightarrow x=4+3\)
\(\Rightarrow x=7\)
c, \(\sqrt{4x^2-4x+1}=3\)
\(\Rightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
d, \(\sqrt{x+3}\ge5\)
\(\Rightarrow x+3\ge25\)
\(\Rightarrow x\ge22\)
e, \(\sqrt{3x-1}< 2\)
\(\Rightarrow3x-1< 4\)
\(\Rightarrow3x< 5\)
\(\Rightarrow x< \frac{5}{3}\)
g, \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Rightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Rightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
\(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Rightarrow\sqrt{x-3}=0\)
\(\Rightarrow x-3=0\)
\(\Rightarrow x=3\)
a) \(16x^2-5=0\)
\(\Leftrightarrow16x^2=5\)
\(\Leftrightarrow x^2=\frac{5}{16}\)
\(\Leftrightarrow x=\pm\sqrt{\frac{5}{16}}\)
b) \(2\sqrt{x-3}=4\)
\(\Leftrightarrow\sqrt{x-3}=2\)
\(\Leftrightarrow x-3=4\)
\(\Leftrightarrow x=7\)
c) \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=3\)
\(\Leftrightarrow2x-1=3\)
\(\Leftrightarrow2x=4\)
\(\Leftrightarrow x=2\)
d) \(\sqrt{x+3}\ge5\)
\(\Leftrightarrow x+3\ge25\)
\(\Leftrightarrow x\ge22\)
e) \(\sqrt{3x-1}< 2\)
\(\Leftrightarrow3x-1< 4\)
\(\Leftrightarrow3x< 5\)
\(\Leftrightarrow x< \frac{5}{3}\)
g) \(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\)
\(\Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\)
\(\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\)
Vì \(\left(\sqrt{x+3}+\sqrt{x-3}\right)>0\)
\(\Leftrightarrow\sqrt{x-3}=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
ĐK: \(x\ge\frac{5}{4}\)
\(9x^2+\sqrt{4x-5}>\sqrt{x}+25\)
<=> \(9x^2-25+\sqrt{4x-5}-\sqrt{x}>0\)
<=> \(\left(3x-5\right)\left(3x+5\right)+\frac{3x-5}{\sqrt{4x-5}+\sqrt{x}}>0\)
<=> \(\left(3x-5\right)\left(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}\right)>0\)
<=> 3x - 5 > 0 vì \(3x+5+\frac{1}{\sqrt{4x-5}+\sqrt{x}}>0\) với mọi \(x\ge\frac{5}{4}\)
<=> x > 5/3 thỏa mãn đk