K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2020

Dấu "=" xảy ra <=> a = b = c

24 tháng 5 2020

Áp dụng Bunhiacopxki dạng phân thức:

VT \(\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\) = 1

7 tháng 4 2017

Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}\)=1

16 tháng 10 2020

Áp dụng bđt Cauchy-Schwarz dạng Engel ta có :

\(VT\ge\frac{\left(a+b+c\right)^2}{a^2+2bc+b^2+2ac+c^2+2ab}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

=> đpcm

Dấu "=" xảy ra <=> a = b = c 

13 tháng 3 2017

a) đáp án A=1

b) B=0

c) C=1

21 tháng 8 2015

Lần sau em viết đề cẩn thận hơn nhé, dấu lớn hơn đúng ra phải là lớn hơn hoặc bằng và không có ẩn d.

Bài này sử dụng bất đẳng thức Cauchy-Schwartz thôi (Nếu bạn chưa quen, thì xem lại phát biểu và chứng minh ở đây: http://olm.vn/hoi-dap/question/174274.html ).

Ta có \(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ca}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{\left(a^2+2bc\right)+\left(b^2+2ca\right)+\left(c^2+2ab\right)}=1.\)

Dấu bằng xảy ra khi và chỉ khi \(a=b=c.\)

3 tháng 1 2016

khó quá xin lỗi nha em  mới hok lớp 7

3 tháng 1 2016

Câu này lớp 7 tớ có làm. Cũng như cái mà gọi là áp dụng t/c dãy tỉ số bằng nhau và tỉ lệ thức. mình tính ra dc a, b. c rồi.

10 tháng 7 2016

a,b,c khác nhau đôi một nghĩa là từng cặp số khác nhau ,là:

+a khác b

+b khác c

+c khác a

\(A=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\)

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0=>\frac{ab+bc+ac}{abc}=0=>ab+bc+ac=0\)

Suy ra: \(ab==-\left(bc+ac\right)=-bc-ac\)

    \(bc=-\left(ab+ac\right)=-ab-ac\)

\(ac=-\left(ab+bc\right)=-ab-bc\)

Nên \(a^2+2ab=a^2+bc+bc=a^2+bc+\left(-ab-ac\right)=a\left(a-b\right)-c\left(a-b\right)=\left(a-b\right)\left(a-c\right)\)

Tương tự,ta cũng có: \(b^2+2ac=\left(b-a\right)\left(b-c\right)\)

                               \(c^2+2ab=\left(c-a\right)\left(c-b\right)\)

Vậy \(A=\frac{1}{\left(a-b\right)\left(a-c\right)}+\frac{1}{\left(b-c\right)\left(b-c\right)}+\frac{1}{\left(c-a\right)\left(c-b\right)}=\frac{b-c+c-a+a-b}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}=0\)

10 tháng 7 2016

những câu còn lại tương tự,bn tự làm nhé
 

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Lời giải:

Ta thấy:

\(\text{VT}=\frac{c^2}{2ab^2c^2+c^2}+\frac{a^2}{2bc^2a^2+a^2}+\frac{b^2}{2ca^2b^2+b^2}\)

Áp dụng BĐT Bunhiacopxky:

\(\text{VT}(2ab^2c^2+c^2+2bc^2a^2+a^2+2ca^2b^2+b^2)\geq (c+a+b)^2\)

\(\Leftrightarrow \text{VT}\geq \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}(*)\)

Áp dụng BĐT Am-GM:

\(3=a+b+c\geq 3\sqrt[3]{abc}\Rightarrow abc\leq 1\)

\(\Rightarrow 2abc(ab+bc+ac)\leq 2(ab+bc+ac)\)

\(\Rightarrow \frac{(a+b+c)^2}{2abc(ab+bc+ac)+a^2+b^2+c^2}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)+a^2+b^2+c^2}=1(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\geq 1\)

Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$

AH
Akai Haruma
Giáo viên
31 tháng 7 2019

Cách khác bằng AM-GM:

\(\text{VT}=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)(1)\)

Áp dụng BĐT AM-GM:

\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)

\(\leq \frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^2a^4}}=\frac{2}{3}(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2})\)

\(\leq \frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}(a+b+c)=2(2)\)

Từ \((1);(2)\Rightarrow \text{VT}\geq 3-2=1\) (đpcm)

27 tháng 11 2019

Cách : AM - GM :

\(VT=3-\left(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}\right)\left(1\right)\)

Áp dụng BĐT AM - GM :

\(\frac{2ab^2}{2ab^2+1}+\frac{2bc^2}{2bc^2+1}+\frac{2ca^2}{2ca^2+1}=\frac{2ab^2}{ab^2+ab^2+1}+\frac{2bc^2}{bc^2+bc^2+1}+\frac{2ca^2}{ca^2+ca^2+1}\)

\(\le\frac{2ab^2}{3\sqrt[3]{a^2b^4}}+\frac{2bc^2}{3\sqrt[3]{b^2c^4}}+\frac{2ca^2}{3\sqrt[3]{c^aa^4}}=\frac{2}{3}\left(\sqrt[3]{ab^2}+\sqrt[3]{bc^2}+\sqrt[3]{ca^2}\right)\)

\(\le\frac{2}{3}\left(\frac{a+b+b}{3}+\frac{b+c+c}{3}+\frac{c+a+a}{3}\right)=\frac{2}{3}\left(a+b+c\right)=2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow VT\ge3-2=1\left(đpcm\right)\)