Cho x2 +y2 =1 là hai số thực thỏa mãn . Gọi M,n là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P=\(\frac{2-2xy+y^2}{4x^2-3xy+y^2}\) . Tính giá trị n2+M2
làm ơn giúp em vs ạ em cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b=1\Leftrightarrow b=1-a\\ \Leftrightarrow P=a^2+1-a=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ P_{min}=\dfrac{3}{4}\Leftrightarrow a=\dfrac{1}{2}\Leftrightarrow b=\dfrac{1}{2}\)
Cho hai số thực x, y thỏa x^2+xy+y^2=1. TÌm giá trị lớn nhất của biểu thức: P=x^3*y+y^3*x
\(A=139\)
\(\Leftrightarrow720:\left(x-6\right)=40\)
\(\Leftrightarrow x-6=18\)
hay x=24
Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\)
\(P=\frac{2-2sina.cosa+cos^2a}{4sin^2a-3sina.cosa+cos^2a}=\frac{2-sin2a+\frac{1+cos2a}{2}}{1+\frac{3\left(1-cos2a\right)}{2}-\frac{3}{2}sin2a}=\frac{5-2sin2a+cos2a}{5-3cos2a-3sin2a}\)
\(\Leftrightarrow3P-3P.cos2a-3P.sin2a=5-2sin2a+cos2a\)
\(\Leftrightarrow\left(3P-2\right)sin2a+\left(3P+1\right)cos2a=5P-5\)
Áp dụng BĐT Bunhiacopxki:
\(\left(5P-5\right)^2\le\left(3P-2\right)^2+\left(3P+1\right)^2\)
\(\Leftrightarrow7P^2-44P+20\le0\)
Theo Viet: \(\left\{{}\begin{matrix}M+n=\frac{44}{7}\\Mn=\frac{20}{7}\end{matrix}\right.\)
\(\Rightarrow M^2+n^2=\left(M+n\right)^2-4Mn=\frac{1376}{49}\)