K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Vì \(\left(x-2\right)^4\ge0\forall x\)dấu "=" xảy ra \(\Leftrightarrow\)x-2=0 \(\Leftrightarrow\)x=2

\(\left(2y-1\right)^{2014}\ge0\forall y\)Dấu "=" xảy ra \(\Leftrightarrow\)2y - 1=0 \(\Leftrightarrow y=\frac{1}{2}\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2014}\ge0\)

Kết hợp với điều kiện đề bài \(\left(x-1\right)^4+\left(2y-1\right)^{2014}\le0\), ta được:

\(\left(x-2\right)^4+\left(2y-1\right)^{2014}=0\)

Vậy x = 2; \(y=\frac{1}{2}\)

Thay x=2; \(y=\frac{1}{2}\)vào M, ta có:

\(M=21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\)

\(=21.4.\frac{1}{2}+4.2.\frac{1}{4}\)

\(=42+2=44\)

Vậy M=44

1 tháng 11 2023

(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0

⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0

*) (x + 20)⁴ = 0

x + 20 = 0

x = 0 - 20

x = -20

*) (2y - 1)²⁰²⁴ = 0

2y - 1 = 0

2y = 1

y = 1/2

M = 5.(-20)².1/2 - 4.(-2).(1/2)²

= 1000 + 2

= 1002

22 tháng 6 2019

Ta có: (x - 2)4 \(\ge\)\(\forall\)x

          (2y - 1)2020 \(\ge\) 0 \(\forall\)y

=> (x - 2)4 + (2y - 1)2020 \(\ge\)\(\forall\)x,y

Mà ĐK : (x - 2)4 + (2y - 1)2020 \(\le\)0

=> (x - 2)4 + (2y - 1)2020 = 0

=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2020}=0\end{cases}}\)

=>  \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)

=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)

Với x = 2, y = 1/2 thay vào biểu thức P, ta có:

   P = \(21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\) = \(42+2=44\)

           Vậy giá trị của P = 44

\(\left(x-2\right)^4+\left(2y-1\right)^{2022}< =0\)

mà \(\left(x-2\right)^4+\left(2y-1\right)^{2022}>=0\forall x,y\)

nên \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

\(M=11xy^2+4xy^2=15xy^2=15\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{15}{2}\)

Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)

\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)

\(=2^{2023}-1\)

6 tháng 3 2016

ta có (x-2)^4 lớn hơn hoặc bằng 0

         (2y-1)^2014 lớn hơn hoặc bằng 0

=>(x-2)^4=(2y-1)^2014=0

TH1

(x-2)^4=0

x-2=0

x=2

Th2

(2y-1)^2014=0

2y-1=0

2y=1

y=1/2

M=21.2^2.1/2+4.2.1/2

M=42+4=46

26 tháng 1 2016

kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh

3 tháng 1 2021

Ta có: 5x2+5y2+8xy-2x+2y+2=0

=> 4x2+8xy+4y2+x2-2x+1+y2+2y+1=0

=> (2x+2y)2+(x-1)2+(y+1)2=0

=> {2x+2y=0 => x=-y

      {x-1 = 0 => x=1

      {y+1 =0 => y=-1

=> x=1, y=-1

Thay vào biểu thức M, ta có:

M=(1+-1)2015+(1-2)2016+(-1+1)2017=0+1+0=1 (đpcm)

20 tháng 12 2016

bài đầu tách thằnh 4x^2 và 4y^2 rồi gộp 2 cái đó vs 8xy rồi dùng hằng đẳng thức. cái còn lại thì ùng x^2 vs 2x và 1, đống còn lại cũng thế

bài sau chưa nghĩ j hêt

13 tháng 12 2017

phân tích đẳng thức trên