Tìm tất cả các số tự nhiên a và b sao cho:
a) a.b = 36 và a>4
b)a.(b - 3) = 17
c) (a-1).(b+2) = 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vậy thì a và b một trong 2 số là 3.
Số còn lại là:
36 : 12 = 3
Vậy số a và b là: 3 và 12.
Vì ƯCLN(a,b)=6 nên ta có:\(\hept{\begin{cases}a⋮6\\b⋮6\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=6m\\b=6n\\ƯCLN\left(m,n\right)=1\end{cases}}\)
Mà ab=360
\(\Rightarrow\)6m.6n=360
\(\Rightarrow\)36(m.n)=360
\(\Rightarrow\)mn=10
Vì ƯCLN(m,n)=1 nên ta có bảng sau :
m 1 10 2 5
n 10 1 5 2
a 6 60 12 30
b 60 6 30 12
Vậy (a; b)\(\in\){(6;60);(60;6);(12;30);(30;12)}
Vì \(\text{ƯCLN(a;b) }=6\Rightarrow\text{ Đặt }\hept{\begin{cases}a=6m\\b=6n\end{cases}\left(m;n\inℕ^∗\right)};\left(m;n\right)=1\)
=> a.b = 360
<=> 6m.6n = 360
=> mn = 10
Với m;n \(\inℕ^∗;\left(m,n\right)=1\)có 10 = 2.5 = 1.10
=> Lập bảng xét 4 trường hợp
m | 1 | 10 | 2 | 5 |
n | 10 | 1 | 5 | 2 |
a | 6 | 60 | 12 | 30 |
b | 60 | 6 | 30 | 12 |
Vậy các cặp (a;b) thỏa mãn là : (6;60) ; (60;6) ; (12;30) ; (30;12)
Giải:
Gọi tổng phải tìm là S, tổng các số có 2 chữ số là \(S_1\), tổng các chữ số chia hết cho 3 là \(S_2\), tổng các số có 2 chữ số chia hết cho 5 là \(S_3\), tổng các số có 2 chữ số chia hết cho 15 là \(S_4\). Ta lần lượt có:
\(S_1=\frac{10+99}{2}\times90=4905\) ; \(S_2=\frac{12+99}{2}\times30=1665.\)
\(S_3=\frac{10+95}{2}\times18=945\) ; \(S_4=\frac{15+90}{2}\times6=315.\)
\(S=S_1-S_2-S_3+S_4=4905-1665-945+315=2610\)
( Phải cộng thêm \(S_4\) vì trong \(S_2\) và \(S_3\) có những số vừa chia hết cho 3 vừa chia hết cho 5(tức là chia hết cho 15) nên những số đó đã được trừ đi 2 lần)
gọi A là tổng các số 2 chữ số là:
A= 10+11+12+13+...+99
=10+99x90:2=4905
gọi B là tổng các chữ số chia hết cho 3:
B=12+15+18+...+99
=12+99x30:2=1665
gọi C là tổng các chữ số chia hết cho 5:
C=10+15+20+..+99
= 10+95x18:2=945
gọi D là tổng hai số chia hết cho cả 3 và 5:
D=15+30+...+90
=15+90x6:2=315.
Tổng tất cả hai số tự nhiên không chia hết cho cả 3 và 5 là:
4905-1665-945+315=2610.
Đ/s:...