Cho:a+b+c=o:
1/a+1/b+1/c=1.Chứng.minh:a^2+b^2+c^2=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b + c - (a + c) = 3 - 2 = 1
b + c - a - c = 1
b -a = 1
a = (1+1)/2 = 1
b = 1 - 1 = 0
c = 3- 0 = 3
Vậy (a,b,c)= (1, 0 ,3)
Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1
Tương tự;-1_<a,b,c_<1
Lấy(1)-(2) có
a2(1-a)+b2(1-b)+c2(1-c)=0 (3)
VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0 Nên từ (3) suy ra;
a2(1-a)=b2(1-b)=c2(1-c)=0
=>a,b,c hoặc bằng 0 hoặc bằng 1
Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0
=>a+b2+c3=0(đpcm)
Từ(1)=>a2=1-b2-c2_<1 =>\a\_<1 =>-1_<a_<1
Tương tự;-1_<a,b,c_<1
Lấy(1)-(2) có
a2(1-a)+b2(1-b)+c2(1-c)=0 (3)
VÌ a2(1-a)>_0;b2(1-b)>_0;c2(1-c)>_0 Nên từ (3) suy ra;
a2(1-a)=b2(1-b)=c2(1-c)=0
=>a,b,c hoặc bằng 0 hoặc bằng 1
Từ (1)=>a,b,c có 1 số bằng 1 còn 2 số bằng 0
=>a+b2+c3=0(đpcm)
\(P=\frac{a+b}{abc}=\frac{1}{c}\left(\frac{a+b}{ab}\right)=\frac{1}{1-\left(a+b\right)}.\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{\left(1-2\sqrt{ab}\right)}.\frac{2}{\sqrt{ab}}\)
\(P\ge\frac{4}{\left(1-2\sqrt{ab}\right).2\sqrt{ab}}\ge\frac{4}{\frac{\left(1-2\sqrt{ab}+2\sqrt{ab}\right)^2}{4}}=16\)
\(\Rightarrow P_{min}=16\) khi \(\left\{{}\begin{matrix}a=b=\frac{1}{4}\\c=\frac{1}{2}\end{matrix}\right.\)