K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2020

a) Ta có: đồ thị hàm số y=ax+b đi qua điểm A (2:1) 

=> 2a+b=1 (1)

   Lại có: đồ thị cắt trục tung tại điểm có tung độ bằng 5

=> b=5 (2)

Từ (1) và (2) ta có: 2a+5=1 

                          => a= -2

b) Gía trị của m để (P) và (d) có 1 điểm chung duy nhất là 

       3x=2x+m

     => 3x2-2x-m

    \(\Delta'=1+3m\) 

       => m= -1/3

Tọa độ điểm chung là:

   3x2=2x-1/3

  => 3x2-2x+1/3

  => x=1/3

 thay x=1/3 vào vào parabol (P) ta đc: y= 3(1/3)2

                                                       y=1/3

 => Tọa độ ddiemr chung là (1/3; 1/3)

a: Vì (d) có hệ số góc là -2 nên a=-2

=>y=-2x+b

Thay x=0 và y=0 vào (d), ta được:

b-2*0=0

=>b=0

b: Vì (d) đi qua A(2;0) và B(0;-3) nên ta co:

2a+b=0 và 0a+b=-3

=>b=-3; 2a=-b=3

=>a=3/2; b=-3

16 tháng 12 2023

a: Thay x=-1 và y=2 vào (d), ta được:

\(-\left(m-2\right)+n=2\)

=>-m+2+n=2

=>-m+n=0

=>m-n=0(1)

Thay x=3 và y=-4 vào (d), ta được:

\(3\left(m-2\right)+n=-4\)

=>3m-6+n=-4

=>3m+n=2(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(m-2\right)+n=1-\sqrt{2}\)

=>\(n=1-\sqrt{2}\)

Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)

=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)

c: 2y+x-3=0

=>2y=-x+3

=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)

Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì

\(-\dfrac{1}{2}\left(m-2\right)=-1\)

=>m-2=2

=>m=4

Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)

Thay x=1 và y=3 vào y=2x+n, ta được:

\(n+2\cdot1=3\)

=>n+2=3

=>n=1

d: 3x+2y=1

=>\(2y=-3x+1\)

=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)

Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì

\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)

Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)

Thay x=1 và y=2 vào (d), ta được:

\(n-\dfrac{3}{2}=2\)

=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)

BÀI 1Cho hàm số y=ax^2 có đồ thị Pa) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm đượcb) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tungc)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)d( chứng tỏ OCDA là hình vuông BÀI 2:Cho hàm...
Đọc tiếp

BÀI 1
Cho hàm số y=ax^2 có đồ thị P
a) tìm a biết rằng P qua điểm A (1;-1) .Vẻ P với a vừa tìm được
b) trên P lấy điểm B có hoành độ -2, tìm phương trình của đường thẳng AB và tìm tọa độ giao điểm D của đường thẳng AB và trục tung
c)viết phương trình đường thẳng (d) qua O và song song với AB, xác định toạ độ giao điểm C của (d) và P (C khác 0)
d( chứng tỏ OCDA là hình vuông

 

BÀI 2:
Cho hàm số y=ax^2
a) tìm a biét đồ của thị hàm số đã cho đi qua điểm A(-căn 3; 3). vẽ đồ thị P của hàm số với a vừa tìm được
b)trên P lấy 2 điểm B, C có hoành độ lần lượt là 1, 2 .Hảy viết phương trình đường thẳng BC
c) cho D( căn 3;3). Chứng tỏ điểm D thuộc P và tam giác OAD là tam giác đều.Tính diện tích của tam giác OAD

 

BÀI 5:Cho hàm số y=2x+b hãy xác định hệ số b trong các trường hợp sau :
a) đồ thị hàm số đã cho cắt trục tung tại điểm có tung độ bằng -3
b) đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng 1.5

0
NA
Ngoc Anh Thai
Giáo viên
22 tháng 5 2021

1. Gọi đường thẳng cần tìm là (d):  y = ax + b.

Giao điểm của (d) và Oy là A (0;2) =>  b = 2 (1).

Giao điểm của (d) và Ox là B (-2;0) => 2a  + b = 0 (2)

Từ (1) và (2) ta có a = -1, b = 2. Vậy (d): y = -x + 2.

2. \(\left\{{}\begin{matrix}mx-2x+y=3\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2mx-4x+2y=6\\3x-2y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2mx-x=m+6\\3x-2y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(2m-1\right)=m+6\\3x-2y=m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất thì pt \(x\left(2m-1\right)=m+6\) có nghiệm duy nhất. Khi đó \(2m-1\ne0\Leftrightarrow m\ne\dfrac{1}{2}.\)

3.

2x + 3y + 5 = 0 ⇔ \(y=\dfrac{-2}{3}x-\dfrac{5}{3}\)

Để hai đường thẳng trùng nhau thì \(a=\dfrac{-2}{3};b=\dfrac{-5}{3}\).

4.

Bán kính đường tròn ngoại tiếp hình vuông là \(\dfrac{\sqrt{2}}{\sqrt{2}}=1\left(cm\right)\).

Độ dài đường tròn ngoại tiếp hình vuông là: 2π (cm).

câu trả lời của thầy nhanh và gọn thật

7 tháng 9 2017

Đáp án C

24 tháng 11 2023

a: Thay x=1 và y=2 vào (d), ta được:

\(1\left(a-2\right)+b=2\)

=>a-2+b=2

=>a+b=4(1)

Thay x=3và y=-4 vào (d), ta được:

\(3\left(a-2\right)+b=-4\)

=>3a-6+b=-4

=>3a+b=2(2)

Từ (1),(2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=4\\3a+b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b-3a-b=2\\a+b=4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2a=2\\a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=4-a=4+2=6\end{matrix}\right.\)

b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:

\(0\left(a-2\right)+b=1-\sqrt{2}\)

=>\(b=1-\sqrt{2}\)

Vậy: (d): \(y=x\left(a-2\right)+1-\sqrt{2}\)

Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:

\(\left(2+\sqrt{2}\right)\left(a-2\right)+1-\sqrt{2}=0\)

=>\(\left(a-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)

=>\(a-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)

=>\(a=\dfrac{3\sqrt{2}}{2}\)