cho a+b+c=a^2+b^2+c^2 và a,b,c khác 0 chứng minh rằng 1/a^2+1/b^2+1/c^2=3/abc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhầm làm lại nha ^^
(a+b+c)^2=a^2+b^2+c^2
=>a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
=>2(ab+bc+ac)=0
=>ab+bc+ac=0
=>(ab+bc+ac)/abc=0
=>ab/abc+bc/abc+ac/abc=0
=>1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3/ab(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3+3/ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3-3/abc=0
=> 1/a^3+1/b^3+1/c^3=3/abc (đpcm)
(a+b+c)^2=a^2+b^2+c^2
a^2+b^2+c^2+2ab+2bc+2ac=a^2+b^2+c^2
2(ab+bc+ac)=0
ab+bc+ac=0
(ab+bc+ac)/abc=0
ab/abc+bc/abc+ac/abc=0
1/c+1/a+1/b=0
=> 1/a+1/b=-1/c
=> (1/a+1/b)^3=(-1/c)^3
=> 1/a^3+1/b^3+3.(1/a.)(1/b).(1/a+1/b)=-1/c^3
=> 1/a^3+1/b^3+1/c^3.3ab.(-1/c)=0
=> 1/a^3+1/b^3+1/c^3=3/abc
2.3+3.(-1,2)+(-1,2).2=0 (a=2, b=3, c=-1,2)
\(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\dfrac{19}{18}\)
\(\dfrac{3}{abc}=-\dfrac{5}{12}\)?
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) khi đó thu được \(xyz=1\)
Ta có:
\(\dfrac{1}{a^2\left(b+c\right)}=\dfrac{x^2}{\dfrac{1}{y}+\dfrac{1}{z}}=\dfrac{x^2yz}{y+z}=\dfrac{x}{y+z}\)
BĐT cần chứng minh được viết lại thành:\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\left(\dfrac{x}{y+z}+1\right)+\left(\dfrac{y}{z+x}+1\right)+\left(\dfrac{z}{x+y}+1\right)\ge\dfrac{9}{2}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\dfrac{1}{y+z}+\dfrac{1}{z+x}+\dfrac{1}{x+y}\right)\ge\dfrac{9}{2}\)
Đánh giá cuối cùng đúng theo BĐT Cauchy
Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi a = b = c = 1.
Lời giải:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2$
$\Rightarrow (\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^2=4$
$\Leftrightarrow \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac})=4$
$\Leftrightarrow 2+2(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac})=4$
$\Leftrightarrow \frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=1$
$\Leftrightarrow \frac{a+b+c}{abc}=1$
$\Leftrightarrow a+b+c=abc$ (đpcm)