Chứng minh rằng: A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{22}>\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/2=1/22+1/22+...+1/22 có 11 p/số
A=1/12+1/13+...+1/22 có 11 p/số
Vì 1/12>1/22
1/13>1/22
.....
1/21>1/22
1/22=1/22
=>A>2
Ai thấy đúng thì !!
1) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh rằng : S > 1
S=3.(\(\frac{1}{10}\)+\(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+\(\frac{1}{14}\))>3.(5.\(\frac{1}{14}\))>3.\(\frac{1}{3}\)=1
Vậy:S>1
\(\frac{1}{3}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}< \frac{1}{3}+\frac{4}{12}=\frac{2}{3}..\)
Bn tham khảo nhé:
Câu hỏi của Hoàng Phú - Toán lớp 7 - Học toán với OnlineMath
~ rất vui vì giúp đc bn ~
b
\(A=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+..+\frac{1}{70}\)
Ta thấy:
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)( có 10 phân số \(\frac{1}{20}\)) = \(\frac{1}{20}\).10 = \(\frac{1}{2}\)
\(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{30}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)(có 10 phân số \(\frac{1}{30}\)) = \(\frac{1}{30}\).10 = \(\frac{1}{3}\)
\(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)( có 10 phân số \(\frac{1}{40}\)) = \(\frac{1}{40}\).10 = \(\frac{1}{4}\)
\(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\)( có 10 phân số \(\frac{1}{50}\)) =\(\frac{1}{50}.10=\frac{1}{5}\)
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)( có 10 phân số \(\frac{1}{60}\)) =\(\frac{1}{60}.10=\frac{1}{6}\)
\(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{70}>\frac{1}{70}+\frac{1}{70}+...+\frac{1}{70}\)( có 10 phân số \(\frac{1}{70}\)) \(=\frac{1}{70}.10=\frac{1}{7}\)
=> A> \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\frac{223}{140}=\frac{699}{420}>\frac{560}{420}=\frac{4}{3}\)
=> A > \(\frac{4}{3}\)
Ta có :
A= \(\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{22}>\) \(\frac{1}{22}+\frac{1}{22}+\frac{1}{22}+...+\frac{1}{22}=\frac{11}{22}=\frac{1}{2}\)
\---------------------------------------------/
11 số 1/22
Từ trên ta có đpcm