K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

bn ơi có thể giải chi tiết giúp m ko

15 tháng 7 2019

\(pt\Leftrightarrow\frac{6\left(x+1\right)+3\left(x+3\right)}{4.3}=\frac{3.4.3-4\left(x+2\right)}{4.3}\)

\(\Leftrightarrow6x+6+3x+9=36-4x-8\)

\(\Leftrightarrow13x=13\)

\(\Leftrightarrow x=1\)

#incude <bits/stdc++.h>

using namespace std;

long long x,y;

int main()

{

cin>>x>>y;

cout<<x*x+2*y+1;

return 0;

}

9 tháng 12 2021

sao mk thấy nó sao sao đấy ạ

 

6 tháng 7 2019

P=5x6-x4-10x5-2x3+x3+5x4-x2-5x3+x

P=5x6-10x5+4x4-6x3-x2+x

Vậy hệ số của x4 trong đa thức là 4
 

8 tháng 6 2020

Trả lời :

a, Do |x - 3|\(\ge\)0 ; |x + 4|\(\ge\)0

=> |x - 3| = x - 3

     |x + 4| = x + 4

=> |x - 3| + |x + 4| = x - 3 + x + 4 = 7

=> 2x + 1 = 7

=> 2x = 6

=> x = 3

8 tháng 6 2020

b, Tương tự câu a có :

|x - 2| + |x - 3| + |x - 4| = x - 2 + x - 3 + x - 4 = 3

=> 3x - 9 = 3

=> 3x = 12

=> x = 4

< P/s : Bài làm có thể thiếu giá trị, nếu sai thông cảm >

a: Để phương trình có nghiệm duy nhất thì \(\left(m-3\right)\left(m+2\right)< >0\)

hay \(m\notin\left\{3;-2\right\}\)

Để phương trình vô nghiệm thì \(\left\{{}\begin{matrix}\left(m-3\right)\left(m+2\right)=0\\\left(m-3\right)\left(m-1\right)< >0\end{matrix}\right.\Leftrightarrow m=-2\)

Để phương trình có vô số nghiệm thì m=3

20 tháng 4 2020

ĐK: \(\hept{\begin{cases}x\ne2\\x\ne-m-1\end{cases}}\)

\(\frac{x+2}{x-2}+\frac{m-x}{x+m+1}=0\)(1) 

=> ( x + 2 ) ( x + m + 1 ) + ( m - x ) ( x - 2 ) = 0 

<=> (m + 3 ) x + 2 ( m + 1 ) + ( m + 2 ) x - 2m = 0 

< => ( 2m + 5 ) x + 2 = 0  (2)

TH1: 2m + 5 = 0 <=> m = -5/2 

Khi đó (2) trở thành:  0x + 2 = 0 => phương trình vô nghiệm với mọi x 

=> m = -5/2 thỏa mãn

TH2: 2m + 5 \(\ne\)0 <=> m \(\ne\)-5/2 

khi đó: (2) có nghiệm: \(x=-\frac{2}{2m+5}\)

( 1) vô nghiệm <=> (2) có nghiệm x = 2 hoặc x = -m -1

<=> \(\orbr{\begin{cases}-\frac{2}{2m+5}=-m-1\\-\frac{2}{2m+5}=2\end{cases}}\)

Giải: \(-\frac{2}{2m+5}=-m-1\) 

<=> 2 = ( m + 1 ) ( 2m + 5 ) 

<=> 2m^2 +7m +3= 0 

<=> m = -1/2 hoặc m = -3  (tm m khác -5/2)

Giải: \(-\frac{2}{2m+5}=2\)

<=> 2m + 5 = - 1 <=> m = - 3 (tm)

Vậy m = -5/2; m = -3; m = -1/2 thì phương trình vô nghiệm.