cho parabol(P) y=1/2x2 và đường thẳng (d) có phương trình y=2x-2 chứng tỏ rằng đường thẳng (d) parabol (P) có điểm chung duy nhất xác định tọa độ điểm chung đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)
\(\Rightarrow\left(d\right):y=-2x+b\)
Vì (d) cắt trục hoành tại điểm có hoành độ = 1
\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)
\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)
b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)
\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)
\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)
a) Ta có: đồ thị hàm số y=ax+b đi qua điểm A (2:1)
=> 2a+b=1 (1)
Lại có: đồ thị cắt trục tung tại điểm có tung độ bằng 5
=> b=5 (2)
Từ (1) và (2) ta có: 2a+5=1
=> a= -2
b) Gía trị của m để (P) và (d) có 1 điểm chung duy nhất là
3x2 =2x+m
=> 3x2-2x-m
\(\Delta'=1+3m\)
=> m= -1/3
Tọa độ điểm chung là:
3x2=2x-1/3
=> 3x2-2x+1/3
=> x=1/3
thay x=1/3 vào vào parabol (P) ta đc: y= 3(1/3)2
y=1/3
=> Tọa độ ddiemr chung là (1/3; 1/3)
a:
b: PTHĐGĐ là:
2x^2-(2m-2)x+m-1=0
Δ=(2m-2)^2-4*2*(m-1)
=4m^2-8m+4-8m+8
=4m^2-16m+12
=4m^2-2*2m*4+16-4=(2m-4)^2-4=(2m-6)(2m-2)
Để (d) cắt (P) tại 2 điểm pb thì (2m-6)(2m-2)>0
=>m>3 hoặc m<1
1.2:Sửa đề: (P): y=x^2
PTHĐGĐ là:
x^2-x-m=0
Δ=(-1)^2-4*1*(-m)=4m+1
Để (P) cắt (d) tại 1 điểm duy nhất thì 4m+1=0
=>m=-1/4
a: PTHĐGĐ là:
x^2-3x+2=0
=>(x-2)(x-1)=0
=>x=2 hoặc x=1
Khi x=2 thì y=2^2=4
Khi x=1 thì y=1^2=1
b: Δ=(2m+2)^2-4(2m-3)
=4m^2+8m+4-8m+12
=4m^2+16>0
=>Phương trình luôn có hai nghiệm
a) Để (d) đi qua điểm A(1;3) thì \(3=2m.1+5\Rightarrow2m=-2\Rightarrow m=-1\)
b) Xét phương trình hoành độ giao điểm: \(x^2=2mx+5\)
\(\Rightarrow x^2-2mx-5=0\left(I\right)\)
Ta có \(\Delta'=m^2+5>0,\forall m\) nên PT (I) luôn có 2 nghiệm phân biệt \(x_1,x_2\) với mọi \(m\)
Vậy (d) luôn cắt (P) tại hai điểm phân biệt.
c) Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-5\end{matrix}\right.\)
Để \(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow4m^2-2.\left(-5\right)=4\Leftrightarrow4m^2=-6\) (Vô lý)
Vậy không có m thỏa mãn ycbt.
a) Thay tọa dộ của điểm T vào dg thẳng d ta dc: -2.(-2) - 6 = -2 (Thỏa mãn)
Vậy điểm T có thuộc dg thẳng d
b) Pt hoành độ giao điểm của (d) và (P) là: -8x2 = -2x - 6
<=> 8x2 - 2x - 6 = 0
<=> (x - 1)(8x + 6) = 0 <=> \(\orbr{\begin{cases}x=1\\x=-\frac{3}{4}\end{cases}}\)
* Với x = 1 => y = -8
* Với x = -3/4 => y = -9/2
Tự kết luận nha
Phần 1 bạn tự vẽ nhé (dùng bang giá trị)
2)Hoành độ giao điểm là ngiệm của phương trình:
2x2=4x-2
Để (d) tiếp xúc(P)<=>delta=0<=>x=1
vậy... (bạn tự viết nốt nhé!!!)
ngu the