cho tam giác DEF( DE = DF) I, K nằm trên đoạn thẳng EF ( EI=FK). chứng minh DI=DK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác DEI và DFK, ta có:
DE=DF (giả thuyết)
góc DEI= góc DFK( 2 góc đáy tam giác cân)
EI=KF (giả thuyết)
=> tam giác DEI= tam giác DFK (cgc)
=>DI=DK
Ta có tam giác DEF cân tại D =>góc E=góc F
Xét tam giác DEI và tam giác DFK có:
góc E=góc F
DE=DF(gt)
EI=KF(gt)
Suy ra: tam giác DEI = tam giác DFK (c-g-c)
=>DI=DK(2 cạnh tương ứng)
a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI
a) Gọi K là giao điểm của EI và DM
Xét \(\Delta EKD\)và \(\Delta EKM\)có :
\(\widehat{E}_1=\widehat{E}_2\)( vì EI là tia phân giác )
\(EI\): Cạnh chung
\(\widehat{EKD}=\widehat{EKM}=90^o\)( GT)
Do đó : Tam giác vuông EKM = Tam giác vuông EKM
\(\Rightarrow ED=EM\)( cặp cạnh tương ứng )
b)
Xét \(\Delta EDI\)và \(\Delta EMI\)có :
\(ED=EM\)( câu a )
\(\widehat{E}_1=\widehat{E_2}\)( vì phân giác )
\(EI:\)Cạnh chung
Do đó : Tam giác EMI = tam giác EDI (c.g.c )
\(\Rightarrow\widehat{EDI}=\widehat{EMI}\)( cặp góc tương ứng )
Mà \(\widehat{EDI}=90^o\)
\(\Rightarrow\widehat{EMI}=90^o\)
\(\Rightarrow\Delta EMI\)là tam giác vuông ( đpcm)
c)
Vì \(\widehat{EMI}=90^o\)( câu b )
\(\Rightarrow\widehat{IMF}=90^o\)
Xét tam giác IMF ta có :
\(\widehat{IMF}=90\)
=> IF là cạnh lớn nhất ( cạnh đối diện với góc vuông )
\(\Rightarrow IF>IM\)
Mà \(IM=ID\)( Vì tam giác EDI = tam giác EMI )
\(\Rightarrow IF>ID\)
c ) Áp dụng t/c đường đồng quy .
a)xét ΔEHI và ΔFKI có :
\(\widehat{K}=\widehat{H}\)(=90o)
\(\widehat{KIF}=\widehat{EIH}\)(2 góc đối đỉnh)
EI=FI(I là trung điểm của EF)
⇒ΔEHI=ΔFKI(cạnh huyền góc nhọn)
⇒IH=IK(2 cạnh tương ứng)
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
a: Xét ΔEDI và ΔFDI có
DE=DF
\(\widehat{EDI}=\widehat{FDI}\)
DI chung
Do đó: ΔEDI=ΔFDI