a) Vẽ parabol (P) :y =\(2x^2\)
b) Viết phương trình đường thẳng (d) cắt parabol (P) tại hai điểm A và B có hoành độ lần lượt là -1 và 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Em tự giải
b. Từ giả thiết ta có \(A\left(-2;1\right)\) và \(B\left(4;4\right)\)
Gọi phương trình (d) có dạng \(y=ax+b\), do (d) qua A và B nên:
\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x+2\)
c. Câu này có vài cách giải cho lớp 9, cách nhanh nhất là sử dụng tính chất tiếp tuyến.
Từ M kẻ \(MH\perp AB\Rightarrow S_{ABM}=\dfrac{1}{2}MH.AB\)
Do AB cố định \(\Rightarrow S_{max}\) khi \(MH_{max}\)
Gọi \(d_1\) là đường thẳng song song d và tiếp xúc (P), gọi C là tiếp điểm \(d_1\) và (P)
Do \(d_1\) song song (d) nên pt có dạng: \(y=\dfrac{1}{2}x+b\)
Phương trình hoành độ giao điểm \(d_1\) và (P):
\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+b\Rightarrow x^2-2x-4b=0\) (1)
Do \(d_1\) tiếp xúc (P) \(\Rightarrow\left(1\right)\) có nghiệm kép
\(\Rightarrow\Delta'=1+4b=0\Rightarrow b=-\dfrac{1}{4}\)
Thế vào (1) \(\Rightarrow x_C^2-2x_C+1=0\Rightarrow x_C=1\Rightarrow y_C=\dfrac{1}{4}\) \(\Rightarrow C\left(1;\dfrac{1}{4}\right)\)
Từ C kẻ \(CK\perp d\)
Giả sử HM kéo dài cắt \(d_1\) tại D \(\Rightarrow\) tứ giác CKHD là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông)
\(\Rightarrow CK=DH\)
Mà \(DH=MH+MD\ge MH\Rightarrow CK\ge MH\)
\(\Rightarrow MH_{max}=CK\) khi M trùng C
Hay \(M\left(1;\dfrac{1}{4}\right)\)
b) Thay x=-4 vào (P), ta được:
\(y=\dfrac{-1}{4}\cdot\left(-4\right)^2=\dfrac{-1}{4}\cdot16=-4\)
Thay x=2 vào (P), ta được:
\(y=\dfrac{-1}{4}\cdot2^2=\dfrac{-1}{4}\cdot4=-1\)
Vậy: A(-4;-4) và B(2;-1)
Gọi (d): y=ax+b(a\(\ne\)0) là phương trình đường thẳng đi qua hai điểm A và B
\(\Leftrightarrow\left\{{}\begin{matrix}-4a+b=-4\\2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6a=-3\\2a+b=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-1-2a=-1-2\cdot\dfrac{1}{2}=-1-1=-2\end{matrix}\right.\)
Vậy: (d): \(y=\dfrac{1}{2}x-2\)
a, - Thay tọa độ hai điểm xA, xB vào (P) ta được : \(\left\{{}\begin{matrix}y_A=2\\y_B=\dfrac{1}{2}\end{matrix}\right.\)
=> Tọa độ 2 điểm A, B lần lượt là : \(\left(2;2\right),\left(-1;\dfrac{1}{2}\right)\) .
b, - Gọi phương trình đường thẳng AB có dạng : y = ax + b .
- Thay tọa độ A, B vào phương trình ta được hệ : \(\left\{{}\begin{matrix}2a+b=2\\-a+b=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
- Thay lại a, b vào phương trình ta được : \(y=\dfrac{1}{2}x+1\)
Vậy ...
a) Vì A, B thuộc (P) nên:
x A = − 1 ⇒ y A = 1 2 ⋅ - 1 2 = 1 2 x B = 2 ⇒ y B = 1 2 ⋅ 2 2 = 2 ⇒ A − 1 ; 1 2 , B ( 2 ; 2 )
b) Gọi phương trình đường thẳng (d) là y = ax + b.
Ta có hệ phương trình:
− a + b = 1 2 2 a + b = 2 ⇔ 3 a = 3 2 2 a + b = 2 ⇔ a = 1 2 b = 1
Vậy (d): y = 1 2 x + 1 .
c) (d) cắt trục Oy tại điểm C(0; 1) và cắt trục Ox tại điểm D(– 2; 0)
=> OC = 1 và OD = 2
Gọi h là khoảng cách từ O tới (d).
Áp dụng hệ thức về cạnh và đường cao vào ∆ vuông OCD, ta có:
1 h 2 = 1 O C 2 + 1 O D 2 = 1 1 2 + 1 2 2 = 5 4 ⇒ h = 2 5 5
Vậy khoảng cách từ gốc O tới (d) là 2 5 5 .
a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)
\(\Rightarrow\left(d\right):y=-2x+b\)
Vì (d) cắt trục hoành tại điểm có hoành độ = 1
\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)
\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)
b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)
\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)
\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)
PTHHĐGĐ là:
x^2-2x-m^2+2m=0
Δ=(-2)^2-4(-m^2+2m)
=4+4m^2+8m=(2m+2)^2
Để phương trình có hai nghiệm phân biệt thì 2m+2<>0
=>m<>-1
x1^2+2x2=3m
=>x1^2+x2(x1+x2)=3m
=>x1^2+x2^2+x1x2=3m
=>(x1+x2)^2-x1x2=3m
=>2^2-(-m^2+2m)=3m
=>4+m^2-2m-3m=0
=>m^2-5m+4=0
=>m=1 hoặc m=4
a, - Xét phương trình hoành độ giao điểm :\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\left(I\right)\)
Có \(\Delta=b^2-4ac=\left(m-2\right)^2-4\left(m-3\right)\)
\(=m^2-4m+4-4m+12=m^2-8m+16=\left(m-4\right)^2\)
- Để P cắt d tại 2 điểm phân biệt <=> PT ( I ) có 2 nghiệm phân biệt .
<=> \(\Delta>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
\(\Leftrightarrow m\ne4\)
Vậy ...
b, Hình như đề thiếu giá trị của cạnh huỳnh hay sao á :vvvv
a) Phương trình hoành độ giao điểm là:
\(x^2=\left(m-2\right)x-m+3\)
\(\Leftrightarrow x^2-\left(m-2\right)x+m-3=0\)
\(\Delta=\left(m-2\right)^2-4\cdot\left(m-3\right)=m^2-4m+4-4m+12=m^2-8m+16\)
Để (d) cắt (P) tại hai điểm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow m^2-8m+16>0\)
\(\Leftrightarrow\left(m-4\right)^2>0\)
mà \(\left(m-4\right)^2\ge0\forall m\)
nên \(m-4\ne0\)
hay \(m\ne4\)
Vậy: khi \(m\ne4\) thì (d) cắt (P) tại hai điểm phân biệt
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=2\left(m-1\right)x+5-2m\)
\(\Leftrightarrow x^2-2\left(m-1\right)x-5+2m=0\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
Ta có: \(x_1+x_2=6\)
\(\Leftrightarrow2\left(m-1\right)=6\)
\(\Leftrightarrow m-1=3\)
hay m=4
Vậy: m=4
Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$
$\Leftrightarrow 0=2.1-m+3=5-m$
$\Leftrightarrow m=5$
b.
PT hoành độ giao điểm:
$x^2-(2x-m+3)=0$
$\Leftrightarrow x^2-2x+m-3=0(*)$
Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$
Điều này xảy ra khi:
$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$
Khi đó:
$x_1^2-2x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$
$\Leftrightarrow x_1^2-x_2^2=-12$
$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$
$\Rightarrow x_1=-2; x_2=4$
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)
a) Ta có bảng giá trị tương ứng x và y sau :
Quả parabol hơi xấu tí thông cảm =))