Tìm số nguyên x, y biết: \(42-3|y-3|=4\left(2015-x\right)^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VP\ge0\forall x\)
\(\Rightarrow42-3\left|y-3\right|\ge0\forall y\)
\(\Rightarrow3\left|y-3\right|\le42\)
\(\Rightarrow0\le\left|y-3\right|\le14\)(1)
Mà dễ thấy 42 chẵn, \(4\left(2012-x\right)^4\)chẵn nên \(3\left|y-3\right|\)chẵn
\(\Rightarrow y-3\)chẵn (2)
Từ (1) và (2) suy ra \(\left|y-3\right|\in\left\{2;4;6;8;10;12;14\right\}\)
Mà \(42-3\left|y-3\right|⋮4\)
nên \(\left|y-3\right|\in\left\{2;6;10;14\right\}\)
Thử từng trường hợp ta chỉ thấy \(\left|y-3\right|=14\)thỏa mãn hay \(y\in\left\{17;-11\right\}\)
Lúc đó \(4\left(2012-x\right)^4=0\Rightarrow x=2012\)
Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath
Em chỉ cần đổi số 2015 ----> 2012
\(1)\)
\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)
\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận )
TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại )
Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)
\(2)\)
\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)
\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)
\(\Rightarrow\)\(VT\ge VP\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận )
\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)
Vậy \(1\le x\le5\) và \(y=-1\)
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)
Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có
\(a^3+b^2+2015|a+b|=2017\)
+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.
Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.
\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)
Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)
Từ (1) và (2) =>x=y=2
\(\Rightarrow3|y-3|+4\left(2015-x\right)^4=42\)
Vì \(3|y-3|\ge0\Rightarrow4\left(2015-x\right)^4\le42\)
\(\Rightarrow\left(2015-x\right)^4\le\frac{42}{4}=10,5\)
\(\Rightarrow\left(2015-x\right)^4=0\) Hoặc \(\left(2015-x\right)^4=1\)
Bn tự thử 2 trường hợp rùi tìm x và y nha! chúc bn hok tot
\(42-3|y-3|=4\left(2015-x\right)^4\)
<=> \(3\left|y-3\right|+4\left(2015-x\right)^4=42⋮3\)(1)
=> \(4\left(2015-x\right)^4⋮3\)
=> \(\left(2015-x\right)⋮3\)
=> \(\left(2015-x\right)^4⋮81\)
=> \(4\left(2015-x\right)^4⋮324\)
Mặt khác từ (1) => \(0\le4\left(2015-x\right)^4\le42\)
=> \(\left(2015-x\right)^4=0\)
=> x = 2015
=> 3 | y - 3 | = 42
=> | y - 3| = 14 <=> \(\orbr{\begin{cases}y-3=14\\y-3=-14\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=17\\y=-11\end{cases}}\)
Vậy x = 2015 và y = 17 hoặc y = -11