Bài tập: chứng minh rằng :
- 817 – 279 – 913 chia hết cho 405.
- 87 – 218 chia hết cho 14.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1; 87 - 218 ⋮ 14
A = 87 - 218
A = - 131 (là số lẻ); 14 là số chẵn
Số lẻ không bao giờ chi hết cho số chẵn
2; 76 + 75 - 913 ⋮ 55
B = 76 + 75 - 913
B = 151 - 913
B = - 762 không chia hết cho 5 nên không chia hết cho 55
81^7 - 27^9 - 9^13
= (3^4)^7 - (3^3)^9 - (3^2)^13
= 3^28 - 3^27 - 3^26
= (3^26.3^2) - (3^26.3^1) - (3^26.1)
= 3^26.(9 - 3 - 1)
= 3^22.(3^4.5)
= 3^22.405 chia hết cho 405
=> 81^7 - 27^9-9^13 chia hết cho 405
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
Ta có: 87 - 218 = (23)7 - 218 = 221 – 218 = 217.( 24 -2)= 217.(16 - 2) = 24.14 ⋮ 14
d; 109 + 108 + 107 ⋮ 555
109 + 108 + 107
= 217 + 107
= 324 < 555
109 + 108 + 107 < 555 (không thể chia hết cho 555)
e; 817 - 279 - 913 ⋮ 45
817 - 279 -913
= 538 - 913
= - 375
3 + 7 + 5 = 15 không chia hết cho 9 n ên 375 không chia hết cho 45
Ta có :
87 - 218 = ( 23 )7 - 218= 221 - 218 = 218 ( 23 - 1 ) = 218 . 7 = 217 .2.7 = 217 . 14 ( chia hết cho 14 )
Vậy 87-218chia hết cho 14
Ta có:
\(8^7-2^{18}=8^7-\left(2^3\right)^6=8^7-8^6=8^5.\left(8^2-8\right)=8^5.56⋮14\)
\(\Rightarrow8^7-2^{18}⋮14\left(đpcm\right)\)
\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}.2^3-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\)
Vây....................
Đây là toán nâng cao chuyên đề chia hết, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp đánh giá như sau:
Bài 1: CM A = n2 + n + 6 ⋮ 2
+ TH1: Nếu n là số chẵn ta có: n = 2k (k \(\in\) N)
Khi đó: A = (2k)2 + 2k + 6
A = 4k2 + 2k + 6
A = 2.(2k2 + k + 3) ⋮ 2
+ TH2: Nếu n là số lẻ ta có: n2; n đều là số lẻ
Suy ra n2 + n là chẵn vì tổng của hai số lẻ luôn là số chẵn
⇒ A = n2 + n + 6 là số chẵn
A = n2 + n + 6 ⋮ 2
+ Từ các lập luận trên ta có: A = n2 + n + 6 ⋮ 2 \(\forall\) n \(\in\) N
Đây là dạng toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này bằng phương pháp quy nạp toán học như sau:
Bài 2: CM: A = n3 + 5n ⋮6 ∀ \(n\) \(\in\) N
Với n = 1 ta có: A = 13 + 1.5
A = 1 + 5 = 6 ⋮ 6
Giả sử A đúng với n = k (k \(\in\) N)
Khi đó ta có: A = k3 + 5k ⋮ 6 \(\forall\) k \(\in\) N (1)
Ta cần chứng minh A = n3 + 5n ⋮ 6 với n = k + 1
Tức là ta cần chứng minh: A = (k + 1)3 + 5.(k + 1) ⋮ 6
Thật vậy với n = k + 1 ta có:
A = (k + 1)3 + 5(k + 1)
A = (k +1).(k + 1)(k + 1) + 5.(k +1)
A = (k2 + k + k +1).(k + 1) + 5k +5
A = [k2 + (k + k) + 1].(k + 1) + 5k + 5
A = [k2 + 2k + 1].(k + 1) + 5k + 5
A = k3 + k2 + 2k2 + 2k + k +1 +5k +5
A = (k3 + 5k) + (k2 + 2k2) + (2k + k) + (1 + 5)
A = (k3 + 5k) + 3k2 + 3k + 6
A = (k3 + 5k) + 3k(k +1) + 6
k.(k +1) là tích của hai số liên tiếp nên luôn chia hết cho 2
⇒ 3.k.(k + 1) ⋮ 6 (2)
6 ⋮ 6 (3)
Kết hợp (1); (2) và (3) ta có:
A = (k3 + 5k) + 3k(k + 1) + 6 ⋮ 6 ∀ k \(\in\) N
Vậy A = n3 + 5n ⋮ 6 \(\forall\) n \(\in\) N (đpcm)
tick cho mik 250 điểm hỏi đáp nhé