cho parabol y=1/2x^2 và đường thẳng (d): y = 3mx - 1 -m
a) chứng minh đường thẳng (d) luôn đi qua một điểm cố định
b) tìm m để đường thẳng (d) tiếp súc với (P)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay x=-1 và y=4 vào (d), ta được:
\(3m\cdot\left(-1\right)+m-2=4\)
\(\Leftrightarrow-2m=6\)
hay m=-3
b) Để (d)//(Δ) thì \(\left\{{}\begin{matrix}3m=6\\m-2\ne-1\end{matrix}\right.\Leftrightarrow m=2\)
a: Thay x=1 và y=2 vào (d), ta được:
2m+1=2
hay m=1/2
a) ( d) : y = 3mx -1 - m
<=> y + 1 =( 3x -1 )
Ta có : \(\forall m\inℝ\) ta luôn có nghiệm : \(\hept{\begin{cases}y+1=0\\3x-1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=-1\end{cases}}\)
Vậy ( d ) luôn đi qua điểm cố định ( 1 / 3 ; -1 )
b) Phương trình hoành độ g điểm giữa ( P ) và ( d )
\(\frac{1}{2}x^2=3mx-1-m\left(1\right)\)
<=> x2 -6mx + 2m + 2 =0 ( ko chắc lắm )
\(\Delta'=\left(3m\right)^2-2m-2=9m^2-2m-2\)
Để (P) tiếp xúc với (d) =>PT ( 1 ) có nghiệm kép => \(\Delta'=0\Leftrightarrow9m^2-2m-2=0\)
\(\Delta'=19\)
\(\Rightarrow\orbr{\begin{cases}m_1=\frac{1-\sqrt{19}}{9}\\m_2=\frac{1+\sqrt{19}}{9}\end{cases}}\)