K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

\(P=\frac{9}{1-2\left(xy+yz+xz\right)}+\frac{2}{xyz}=\frac{9}{\left(x+y+z\right)^2-2\left(xy+yz+xz\right)}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{9}{x^2+y^2+z^2}+\frac{6\sqrt[3]{xyz}}{xyz}\ge\frac{9}{x^2+y^2+z^2}+\frac{18}{3\sqrt[3]{x^2y^2z^2}}\)

\(\ge\frac{9}{x^2+y^2+z^2}+\frac{36}{2\left(xy+yx+xz\right)}\ge9\left(\frac{1}{\left(x+y+z\right)^2}+\frac{2^2}{2\left(xy+yz=xz\right)}\right)\)

\(\ge\frac{81}{\left(x+y+z\right)^2=81}\)

Dấu = xảy ra khi x =  y = z = 1/3

\(\frac{x^2}{y+1}+\frac{y+1}{4}\ge x;\frac{y^2}{z+1}+\frac{z+1}{4}\ge y;\frac{z^2}{x+1}+\frac{x+1}{4}\ge z\)

\(\Rightarrow VT\ge\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.2=\frac{3}{2}\)

10 tháng 8 2017

\(P=\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+1}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{xz}+\sqrt{z}+1}\)( Vì xyz=1 nên \(\sqrt{xyz}=1\))

\(P=\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{y}+1+\sqrt{yz}\right)}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{\sqrt{z}}{\sqrt{z}\left(\sqrt{x}+1+\sqrt{xy}\right)}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{1}{\sqrt{x}+1+\sqrt{xy}}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{xyz}}{\sqrt{x}\left(1+\sqrt{yz}+\sqrt{y}\right)}\)

\(P=\frac{\sqrt{y}+1}{\sqrt{y}+1+\sqrt{yz}}+\frac{\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=\frac{\sqrt{y}+1+\sqrt{yz}}{\sqrt{y}+1+\sqrt{yz}}=1\)

14 tháng 1 2020

Áp dụng BĐT AM - GM:

\(\sqrt{1+x^3+y^3}\ge\sqrt{3\sqrt[3]{1.x.y}}=\sqrt{3xy}\)

\(\Leftrightarrow\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}\)

Tương tự: \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}\); \(\frac{\sqrt{1+z^3+x^3}}{zx}\ge\frac{\sqrt{3zx}}{zx}\)

\(\Rightarrow S\ge\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)

\(=\sqrt{3}\left(\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{xyz}}\right)\)

\(=3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\ge\sqrt{3}.3\sqrt[3]{\sqrt{xyz}}=3\sqrt{3}\)

\(\Rightarrow min_S=3\sqrt{3}\Leftrightarrow x=y=z=1\)

12 tháng 12 2016

\(\frac{2013x}{xy+2013x+2013}+\frac{y}{yz+y+2013}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{1+xz+z}+\frac{1}{z+1+xz}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

=>đpcm

12 tháng 12 2016

2013x/xy+2013x+2013 + y/yz+y+2013 + z/xz+z+1

= xyz.x/xy+xyz.x+xyz + y/yz+y+xyz + z/xz+z+1

= xz/1+xz+z + 1/z+1+xz + z/xz+z+1

= xz+1+x/1+xz+x = 1 (đpcm)