K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

a) Xét tam giác DFB có:

\(\hept{\begin{cases}\widehat{D}=90^o\left(DE\perp AB\right)\\\widehat{C}=90^o\end{cases}}\)

=> Tứ giác DFBC nội tiếp

b) Xét tam giác BFG có \(\hept{\begin{cases}\widehat{FBG}=\frac{1}{2}\widebat{AG}\\\widehat{BGF}=\frac{1}{2}\widebat{AE}\end{cases}}\)

Mà cung AB= cùng BG

=> BF=BG 

13 tháng 2 2022

Bài này mk cx ko bt lm ý b , nó khó ghê lun 

 

28 tháng 5 2023

Em tự vẽ hình nhé!

Có: \(\widehat{CDA}=90^o\)

\(\widehat{CEA}=\widehat{BEA}=90^o\)

\(\Rightarrow\widehat{CDA}+\widehat{CEA}=90^o+90^o=180^o\)

Do đó: tứ giác EADC nội tiếp.

a) Xét (O) có 

\(\widehat{BFA}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{BFA}=90^0\)(Hệ quả góc nội tiếp)

\(\Leftrightarrow\widehat{BFC}=90^0\)
Xét tứ giác DFBC có 

\(\widehat{CDB}\) và \(\widehat{CFB}\) là hai góc đối

\(\widehat{CDB}+\widehat{CFB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DFBC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

15 tháng 7 2021

a) Vì AB là đường kính \(\Rightarrow\angle ADB=\angle ACB=90\)

\(\Rightarrow\angle FDE+\angle FCE=90+90=180\Rightarrow ECFD\) nội tiếp

b) GH cắt AD tại F'.F'B cắt AE tại C'

Ta có: \(\left\{{}\begin{matrix}F'H\bot AB\\BD\bot AF'\end{matrix}\right.\Rightarrow E\) là trực tâm \(\Delta F'AB\Rightarrow AE\bot F'B\Rightarrow AC'\bot F'B\)

mà AB là đường kính \(\Rightarrow C'\in\left(O\right)\Rightarrow C\equiv C'\Rightarrow F'\equiv F\Rightarrow\) đpcm

undefined