Tam giác ABC có AB=3cm, BC=5cm, CA=7m. Tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất là 4,5cm. Tính các cạnh còn lại của tam giác A'B'C'
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tam giác A'B'C' đồng dạng với tam giác ABC có cạnh nhỏ nhất bằng 4,5 nên cạnh nhỏ nhất của △ A'B'C' tương ứng với cạnh AB nhỏ nhất của △ ABC
Giả sử A'B' là cạnh nhỏ nhất 'của Δ A'B'C'
Vì △ A'B'C' đồng dạng △ ABC nên
Thay AB = 3(cm), AC = 7(cm), BC = 5(cm), A'B' = 4,5(cm) vào (1) ta có:
Vậy:
Anh mình nghĩ là như thế này. Mà ko biết đúng hay sai .
Ta có : \(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
Suy ra : \(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)
\(\Rightarrow B'C'=\frac{5.4,5}{3}=7,5\)
\(C'A'=\frac{7.4,5}{3}=10,5\)
Chu vi tam giác A'B'C' là :
4,5 + 7,5 + 10,5 = 22,5 cm
Đ/s : 22,5 cm
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\)
a, Có AB ^2 = 5^2=25
Có BC^2 +AC ^2= 4^2 +3^2=16+9=25
\(\Rightarrow\)AB^2 = AC^ 2+ BC^2 (=25)
\(\Rightarrow\)Tam giác ABC là tam giác vuông tại C ( Định lý pytago đảo)
\(\Rightarrow\)Góc ACB = 90 độ
b, Có góc BCD + góc ACB = 180 độ( 2 góc kề bù)
góc BCD + 90 độ = 180 độ
góc BCD = 90 độ
Xét tam giác ABC và BDC , có:
AC=CD ( vì cùng = 3cm)
góc ACB = góc BCD ( vì cùng = 90 độ)
BC là cạnh chung
\(\Rightarrow\)Tam giác ABC= Tam giác BCD (c.g.c)
\(\Rightarrow\) AB = BD (2 cạnh tương ứng)
Xét tam giác ABD, có:
AB = BD (chứng minh trên)
\(\Rightarrow\)Tam giác ABD cân tại B
a. Ta có:
AB2 + AC2 = 32 + 42 = 25 = 52 = BC2
Tam giác ABC vuông tại A (theo định lí Pytago đảo) (2 điểm)
Xét tam giác ABC : \(AB^2+AC^2=3^2+4^2=5^2=BC^2\)
\(\Rightarrow\Delta ABC\) vuông tại A \(\Rightarrow\widehat{A}=90^o\)
\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\\
\Rightarrow\widehat{B}=53^o8'\)
\(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\\ \Rightarrow\widehat{C}=36^o52'\)