Biểu thức B=\(\frac{1}{\sqrt{x}+5}\) đạt giá trị lớn nhất là....
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. \(P=x^2-x\sqrt{3}+1=\left(x^2-x\sqrt{3}+\frac{3}{4}\right)+\frac{1}{4}=\left(x-\frac{\sqrt{3}}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)
Dấu '=' xảy ra khi \(x=\frac{\sqrt{3}}{2}\)
Vây \(P_{min}=\frac{1}{4}\)khi \(x=\frac{\sqrt{3}}{2}\)
3. \(Y=\frac{x}{\left(x+2011\right)^2}\le\frac{x}{4x.2011}=\frac{1}{8044}\)
Dấu '=' xảy ra khi \(x=2011\)
Vây \(Y_{max}=\frac{1}{8044}\)khi \(x=2011\)
4. \(Q=\frac{1}{x-\sqrt{x}+2}=\frac{1}{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{7}{4}}=\frac{1}{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{7}{4}}\le\frac{4}{7}\)
Dấu '=' xảy ra khi \(x=\frac{1}{4}\)
Vậy \(Q_{max}=\frac{4}{7}\)khi \(x=\frac{1}{4}\)
Tèn ten ! Tìm mãi mới thấy 1 bài hay !!
Bài làm : ( hay thì hay nhưng mk chỉ làm ngắn gọn thui !Ngại)
Ta có :
\(x^2-2\sqrt{2}x+5+\left(x-\sqrt{2}\right)^2+3\ge3\)
\(\Rightarrow\frac{1}{x^2-2\sqrt{2}x+5}\le\frac{1}{3}\)
Do đó , khi \(x=\sqrt{2}\) thì biểu thức trên có giá trị lớn nhất là \(\frac{1}{3}\)
Ta có: \(\frac{1}{x^2-2\sqrt{2}x+5}=\frac{1}{x^2-2x\sqrt{2}+2+3}=\frac{1}{\left(x-\sqrt{2}\right)^2+3}\)
Lại có: \(\left(x-\sqrt{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)^2+3\ge3\forall x\)
\(\Leftrightarrow\frac{1}{\left(x-\sqrt{2}\right)^2+3}=\frac{1}{3}\)
Dấu " = " xảy ra thì biểu thức có \(Min=\frac{1}{3}\)
Khi đó: \(\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
\(\Leftrightarrow x=\sqrt{2}\)
Vậy ............
\(B=\frac{1}{\sqrt{x}+5}\) đạt GTLN thì \(\sqrt{x}+5\) nhỏ nhất
\(\Leftrightarrow\sqrt{x}\) nhỏ nhất
\(\Rightarrow\sqrt{x}=0\)
\(\Rightarrow x=0\)
Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=1\Rightarrow\sqrt{x}=-4\) ( vô lí ). Vậy \(\sqrt{x}+5\ge5\)
\(\Rightarrow\) Để biểu thức trên có giá trị lớn nhất thì: \(\frac{1}{\sqrt{x}+5}=\frac{1}{5}\Rightarrow\sqrt{x}+5=5\Rightarrow\sqrt{x}=0\Leftrightarrow x=0\)
Tick mik nha
1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
để \(B=\frac{1}{\sqrt{x}+5}\) thì \(\sqrt{x}+5\) nhỏ nhất
xét mẫu:\(\sqrt{x}+5\)
ta có:\(\sqrt{x}\ge0\)
nên : \(\sqrt{x}+5\ge5\)
vậy B=\(\frac{1}{\sqrt{x}+5}\) lớn nhất bằng \(\frac{1}{2}=0,2\)