Tìm tât cả các số nguyên dương n sao cho n2+2 là ước số của n6+206
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có n6+206 có ước là n2+2
=> n6+206 chia hết n2+2
=>(n2+2)(n4-2n2+4)+198 chia hết n2+2
=> n2+2 thuộc Ư(198)={3;6;9;11;18;22;33;66;198} (Do n^2+1 >1)
=> n^2 thuộc {1;4;7;9;16;20;31;64;196}
Mà n thuộc N*
=> n thuộc {1;2;3;4;8;14}
Chúc học tốt Kkk
Ta có \(b\left(a^2-2\right)=a\left(ab+2\right)-2\left(a+b\right)\). Do \(a^2-2\vdots ab+2\) nên \(2\left(a+b\right)\vdots ab+2\to ab+2\le2a+2b\to\left(a-2\right)\left(b-2\right)\le2\).
Với \(a=1\to-\frac{1}{b+2}\in Z\), loại
Với \(a=2\to\frac{4}{2b+2}\in Z\to2b+2=4\to b=1\)
Với \(a=3\to\frac{7}{3b+2}\in Z\to3b+2=7\to\) loại
Với \(a=4\to\frac{14}{4b+2}\in Z\to4b+2=14\to b=3.\)
Với \(a\ge5\to b-2\le\frac{2}{a-2}
Câu hỏi của NGUUYỄN NGỌC MINH - Toán lớp 9 - Học toán với OnlineMath
Bạn ơi, nếu như vậy thì thầy mình sẽ bắt mình chứng minh là chỉ có 2 số 3 với 5 là 2 số có dạng \(2^n-1\) với \(2^n+1\) đó bạn. Nếu bạn không phiền thì chứng minh giúp mình với nhé. Mình cảm ơn bạn trước.
Trả lời:
Xét trường hợp n⋮(n−1)n⋮(n−1), dễ tìm được n=2, thỏa mãn.
- Với n không chia hết cho n-1, ta có:
Nếu n là số nguyên tố, dễ thấy (n−2)!(n−2)! không chia hết cho nn , thỏa mãn.
Nếu n là hợp số, (n−2)!(n−2)! chia hết cho n2n2 khi n có ít nhất 4 ước trong đoạn [2,n−2][2,n−2] (suy ra trực tiếp từ chính chất nếu d là ước của n thì {\frac{n}{d}} cũng là ước của n), khi đó, n sẽ có ít nhất 6 ước (thêm 1 và n).
Do đó, trong trường hợp này, (n−2)!(n−2)! không chia hết cho n2n2 khi n có ít hơn 6 ước.
Kết hợp lại, ta được đáp án : n là các số có ít hơn 6 ước.