K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Gọi d là ƯCLN (a,a+b) và d thuộc N*

=> a+b chia hết cho d ; b chia hết cho d

=> a chia hết cho d ; b chia hết cho d 

Mà phân số a/b tối giản =>d = 1

=> ƯCLN(a,a+b)=1

=> Phân số a/a+b tối giản 

25 tháng 2 2024

Ta có

\(\dfrac{a+b}{b}=1+\dfrac{a}{b}=1\dfrac{a}{b}\)

Vì \(\dfrac{a}{b}\)là phân số tối giản nên \(1\dfrac{a}{b}\)là phân số tối giản

Vậy\(\dfrac{a+b}{b}\)là phân số tối giản

4 tháng 4 2020

Giả sử \(\frac{a+b}{b}\) không là phân số tối giản

Gọi ƯCLN của a+b;a là d ( d khác 1 )

Khi đó:\(a+b⋮d;b⋮d\)

\(\Rightarrow\left(a+b\right)-b⋮d\)

\(\Rightarrow a⋮d\) mà b chia hết cho d suy ra \(\frac{a}{b}\) không tối giản ( vô lý )

Vậy ta có đpcm

11 tháng 3 2017

rễ lắm

11 tháng 3 2017

làm sao làm sao, gấp lắm, sắp nộp rùi

2 tháng 3 2018

Vì \(\frac{a}{b}\)tối giản nên UCLN(a,b)=1

Gọi UCLN(a+b,b)=d

Ta có:\(\hept{\begin{cases}a+b⋮d\\b⋮d\end{cases}}\)\(\Rightarrow\left(a+b\right)-b⋮d\)\(\Rightarrow a⋮d\) mà \(b⋮d\) nên d\(\in\)ƯC(a,b)=1

Vậy \(\frac{a+b}{b}\) là phân số tối giản

10 tháng 4 2022

bạn   viết sai 1 câu 

6 tháng 8 2016

Gọi d = ƯCLN(a, a+b) (d thuộc N*)

=> a chia hết cho d; a + b chia hết cho d

=> a chia hết cho d; b chia hết cho d

Mà phân số a/b tối giản => d = 1

=> ƯCLN(a, a+b) = 1

=> phân số a/a+b tối giản

6 tháng 8 2016

Gọi d = ƯCLN(a, a+b) (d thuộc N*)

=> a chia hết cho d; a + b chia hết cho d

=> a chia hết cho d; b chia hết cho d

Mà phân số a/b tối giản => d = 1

=> ƯCLN(a, a+b) = 1

=> phân số a/a+b tối giản

12 tháng 4 2016

\(\frac{a+b}{b}\)=\(\frac{a}{b}+\frac{b}{b}=\frac{a}{b}+1\)

1 là ps tối giản, \(\frac{a}{b}\)à ps chưa tối giản 

suy ra \(\frac{a+b}{b}\) là ps tối giản

16 tháng 4 2015

\(\frac{a-2b}{b}=\frac{a-b+b}{b}=\frac{a}{b}\)là phân số tối giản.

Thế thôi ! Bạn chỉ cần tách tử số là ra luôn !^^

12 tháng 3 2017

Gọi ƯCLN(a,b)=d (d khác 0,-1,1)

=>\(a⋮d\)

\(b⋮d\)

Sử dụng tính chất chia hết của 1 tổng, ta được:

\(\left(a+b\right)⋮d\)

Mà \(b⋮d\)

nên phân số \(\frac{a+b}{b}\) rút gọn được cho d.

Vậy phân số trên chưa tối giản.