K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 4 2020

Lời giải:

Áp dụng định lý Vi-et cho 2 nghiệm $x_1,x_2$ của pt $3x^2+5x-6=0$ ta có:

\(\left\{\begin{matrix} x_1+x_2=\frac{-5}{3}\\ x_1x_2=-2\end{matrix}\right.\)

Khi đó:

\(\left\{\begin{matrix} y_1+y_2=x_1+\frac{1}{x_2}+x_2+\frac{1}{x_1}=(x_1+x_2)+\frac{x_1+x_2}{x_1x_2}=\frac{-5}{3}+\frac{-5}{3.(-2)}=\frac{-5}{6}\\ y_1y_2=x_1x_2+1+1+\frac{1}{x_1x_2}=-2+2+\frac{1}{-2}=\frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Vi-et đảo, $y_1,y_2$ là nghiệm của pt:

$y^2+\frac{5}{6}y-\frac{1}{2}=0$

$\Leftrightarrow 6y^2+5y-3=0$ (đây là pt cần tìm)

7 tháng 3 2021

Theo hệ thức Vi-ét:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{3}\left(1\right)\\x_1x_2=\dfrac{m}{3}\left(2\right)\end{matrix}\right.\) 

Ta có  \(6x_1+x_2=0\)\(\Rightarrow5x_1+\left(x_1+x_2\right)=0\Rightarrow5x_1+\dfrac{5}{3}=0\Leftrightarrow x_1=-\dfrac{1}{3}\) Thay vào (1) ta được:

\(x_2-\dfrac{1}{3}=\dfrac{5}{3}\Rightarrow x_2=2\)

Thay \(x_1=-\dfrac{1}{3};x_2=2\) vào (2) ta được:

\(-\dfrac{2}{3}=\dfrac{m}{3}\Rightarrow m=-2\)

1 tháng 1 2022

Giải thích các bước giải:

a.Với m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3}m=6→x2−5x+6=0→(x−2)(x−3)=0→x∈{2,3} 

b.Để phương trình có 2 nghiệm x1,x2x1,x2

→Δ=52−4m≥0→m≤254→Δ=52−4m≥0→m≤254

→{x1+x2=5x1x2=m→{x1+x2=5x1x2=m

Mà |x1−x2|=3→(x1−x2)2=9|x1−x2|=3→(x1−x2)2=9

→(x1+x2)2−4x1x2=9→(x1+x2)2−4x1x2=9

→52−4m=9→52−4m=9

→m=−4

1 tháng 1 2022

a, khi m=6 thì pt\(\Leftrightarrow x^2-5x+6=0\)

                           \(\Leftrightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\\ \Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b,Ta có:\(\Delta=\left(-5\right)^2-4.1.m=25-4m\)

để pt có 2 nghiệm x1, x2 phân biệt thì \(\Delta>0\) hay \(25-4m>0\Rightarrow m< \dfrac{25}{4}\)

25 tháng 5 2022

\(\Delta=\left(-5\right)^2-4\left(m-1\right)\)

   \(=25-4m+4\)

   \(=29-4m\)

Để pt có 2 nghiệm thì \(\Delta>0\)

                                    \(\Leftrightarrow m< \dfrac{29}{4}\)

Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-1\end{matrix}\right.\) (1)

\(2x_2=\sqrt{x_1}\) ; \(ĐK:x_1;x_2\ge0\)

\(\Leftrightarrow4x_2^2=\left|x_1\right|\)

\(\Leftrightarrow4x_2^2=x_1\) (2)

Thế \(x_1=4x^2_2\) vào \(\left(1\right)\), ta được:

\(\left\{{}\begin{matrix}4x_2^2+x_2-5=0\\4x_2^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x_2=-\dfrac{5}{4}\left(ktm\right)\\x_2=1\left(tm\right)\end{matrix}\right.\\4.1^3-m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=1\\m=5\end{matrix}\right.\)

\(\left(2\right)\Rightarrow x_1=4\)

Vậy \(\left\{{}\begin{matrix}m=5\\x_1=4\\x_2=1\end{matrix}\right.\)

 

 

9 tháng 3 2019

x 2  - 3x + m - 5 = 0

a = 1; b = -3; c = m – 5

Δ = b 2 - 4ac = - 3 2 - 4(m - 5) = 29 - 4m

Phương trình có 2 nghiệm phân biệt x 1 ; x 2  khi và chỉ khi

Δ > 0 ⇔ 29 - 4m > 0 ⇔ m < 29/4

Theo định lí Vi-et ta có:

x 1 ; x 2  = c/a = m - 5

Theo bài ra

x 1 ; x 2 = 4 ⇔ m - 5 = 4 ⇔ m = 9 (Không TMĐK m < 29/4)

Vậy không tồn tại m thỏa mãn đề bài.

a, \(x^2-3x-6+4=0\)

\(\Leftrightarrow x^2-3x-2=0\)

Ta có : \(\left(-3\right)^2-4.\left(-2\right)=9+8=17>0\)

Nên có 2 nghiệm phân biệt 

\(x_1=\frac{3-\sqrt{17}}{2};x_2=\frac{3+\sqrt{17}}{2}\)

b, Để PT có nghiệm thì \(\Delta=0\)

\(\Leftrightarrow b^2-4ac=0\)

\(\Leftrightarrow\left(-3\right)^2-4\left(-m+4\right)=0\)

\(\Leftrightarrow9+4m-16=0\)

\(\Leftrightarrow7+4m=0\)

\(\Leftrightarrow m=-\frac{7}{4}\)

Vậy => m = -7/4 

c, Ko rõ 

1 tháng 11 2019

Chọn D