Cho tam giác ABC cân tại A. Trên AB lấy D, trên AC lấy E sao cho AD=EC=DE=BC
a, Nếu AB > 2BC. Tính góc A
b, Nếu AB < BC. Tính góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét tg ABD và tg EBD có:
BD chung
AB = BE (gt)
góc ABD = góc EBD ( BD là pg góc B)
=> tg ABD = tg EBD (c-g-c)
=> \(\left\{{}\begin{matrix}\text{AD = DE (2 cặp cạnh tương ứng)}\\\text{góc BAD = góc BED (2 cặp góc tương ứng)}\end{matrix}\right.\)
mà góc BAD = 90 ( tg ABC vuông tại A)
=> góc BED = 90
=> DE vuông góc BC
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
Suy ra: AD=AE(hai cạnh tương ứng)
Ta có: AD=AE(cmt)
nên A nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: MD=ME(M là trung điểm của DE)
nên M nằm trên đường trung trực của DE(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AM là đường trung trực của DE
\(\Leftrightarrow AM\perp DE\)
hay \(AM\perp BC\)(đpcm)