K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

a) m2x - m2 = 4x - 3m + 2

⇔ m2x - 4x = m2 - 3m + 2

⇔ (m2 - 4)x = m2 - 2m - m + 2

⇔ (m - 2)(m + 2)x = (m - 2)(m - 1)

* Xét m ≠ \(\pm2\) ⇒ pt có no duy nhất x = \(\frac{\left(m-2\right)\left(m-1\right)}{\left(m-2\right)\left(m+2\right)}=\frac{m-1}{m+2}\)

* Xét m = 2 => pt có dạng 0x = 0 => pt có vô số no

* Xét m = -2 => pt có dạng 0x = 12 => pt vô no

Vậy ....

b)Theo câu a ta có:

Với m≠ \(\pm2\)⇒ pt có no duy nhất x= \(\frac{\left(m-2\right)\left(m-1\right)}{\left(m-2\right)\left(m+2\right)}=\frac{m-1}{m+2}\)

\(\frac{m}{m+1}\ne\frac{m-1}{m+2}\)

=> Để pt có no duy nhất x = \(\frac{m}{m+1}\) thì m ∈ ∅

1 tháng 4 2020

cảm ơn bạn nhiều

1: Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot\left(m+2\right)\left(3-m\right)\)

\(=\left(2m-2\right)^2+4\left(m+2\right)\left(m-3\right)\)

\(=4m^2-8m+4+4\left(m^2-3m+2m-6\right)\)

\(=4m^2-8m+4+4m^2-4m-24\)

\(=-12m-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow-12m-20>0\)

\(\Leftrightarrow-12m>20\)

hay \(m< \dfrac{-5}{3}\)

Để phương trình có nghiệm kép thì Δ=0

\(\Leftrightarrow-12m-20=0\)

\(\Leftrightarrow-12m=20\)

hay \(m=\dfrac{-5}{3}\)

Để phương trình vô nghiệm thì Δ<0

\(\Leftrightarrow-12m-20< 0\)

\(\Leftrightarrow-12m< 20\)

hay \(m>\dfrac{-5}{3}\)

2: ĐKXĐ: \(m\ne-2\)

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m+2}=\dfrac{2m-2}{m+2}\\x_1\cdot x_2=\dfrac{3-m}{m+2}\end{matrix}\right.\)

Ta có: \(x_1+x_2=x_1x_2\)

\(\Leftrightarrow\dfrac{2m-2}{m+2}=\dfrac{3-m}{m+2}\)

Suy ra: 2m-2=3-m

\(\Leftrightarrow2m+m=3+2\)

\(\Leftrightarrow3m=5\)

hay \(m=\dfrac{5}{3}\)(thỏa ĐK)

13 tháng 6 2019

m2x + 6 = 4x + 3m

⇔ m2.x – 4x = 3m – 6

⇔ (m2 – 4).x = 3m – 6 (2)

+ Xét m2 – 4 ≠ 0 ⇔ m ≠ ±2, phương trình (2) có nghiệm duy nhất:

Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

+ Xét m2 – 4 = 0 ⇔ m = ±2

     ● Với m = 2, pt (2) ⇔ 0x = 0 , phương trình có vô số nghiệm

     ● Với m = –2, pt (2) ⇔ 0x = –12, phương trình vô nghiệm.

Kết luận:

     + m = 2, phương trình có vô số nghiệm

     + m = –2, phương trình vô nghiệm

     + m ≠ ±2, phương trình có nghiệm duy nhất Giải bài 2 trang 62 sgk Đại số 10 | Để học tốt Toán 10

a: Khi m=1 thì pt sẽ là: x+x-3=6x-6

=>6x-6=2x-3

=>4x=3

=>x=3/4

b: m^2x+m(x-3)=6(x-1)

=>x(m^2+m-6)=-6+3m=3m-6

=>x(m+3)(m-2)=3(m-2)

Để (1) có nghiệm duy nhất thì (m+3)(m-2)<>0

=>m<>-3 và m<>2

=>x=3/(m+3)

\(A=\dfrac{\left(\dfrac{3}{m+3}\right)^2+\dfrac{6}{m+3}+3}{\left(\dfrac{3}{m+3}\right)^2+2}\)

\(=\dfrac{9+6m+18+3m^2+18m+27}{\left(m+3\right)^2}:\dfrac{9+2m^2+12m+18}{\left(m+3\right)^2}\)

\(=\dfrac{3m^2+24m+54}{2m^2+12m+27}>=\dfrac{1}{2}\)

Dấu = xảy ra khi 6m^2+48m+108=2m^2+12m+27

=>4m^2+36m+81=0

=>m=-9/2

28 tháng 3 2022

a) khi m = 1 ta có pt
x + 1.(x-3) = 6.(x-1) 
=> x + x - 3 = 6x - 6
=> -4x = -3
=> x = 3/4
vậy với m=1 pt có no x =3/4

10 tháng 7 2016

can tui giup k

14 tháng 12 2017

Phương trình ax + b = 0 có nghiệm duy nhất khi a ≠ 0  .

Xét phương trình  m 2 + 1 x + 2 = 0  có hệ số a= m2 + 1> 0  với mọi m.

Do đó, phương trình này luôn có nghiệm duy nhất với mọi giá trị của m.

Bài 1: 

a) Thay m=3 vào (1), ta được:

\(x^2-4x+3=0\)

a=1; b=-4; c=3

Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:

\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)

Bài 2: 

a) Thay m=0 vào (2), ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

hay x=1