K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
22 tháng 10 2021

ta có 2n+2 và 2n+3 là hai số tự nhiên liên tiếp và lớn hơn 1

thế nên hai số này nguyên tố cùng nhau

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

8 tháng 6 2023

Gọi \(ƯCLN\left(n+3,2n+5\right)\) là \(d\left(d\in N^{\circledast}\right)\) 

\(=>n+3⋮d;2n+5⋮d\)

\(=>2\left(n+3\right)⋮d;2n+5⋮d\)

\(=>2n+6⋮d;2n+5⋮d\)

\(=>\left(2n+6\right)-\left(2n+5\right)⋮d\)

\(=>1⋮d\)

\(=>d=1\)

 Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với \(n\in N\)

8 tháng 6 2023

Gọi Ư���(�+3,2�+5)ƯCLN(n+3,2n+5) là �(�∈�⊛)d(dN) 

=>�+3⋮�;2�+5⋮�=>n+3d;2n+5d

=>2(�+3)⋮�;2�+5⋮�=>2(n+3)d;2n+5d

=>2�+6⋮�;2�+5⋮�=>2n+6d;2n+5d

=>(2�+6)−(2�+5)⋮�=>(2n+6)(2n+5)d

=>1⋮�=>1d

=>�=1=>d=1

 Vậy n+3 và 2n+5 là 2 số nguyên tố cùng nhau với �∈�nN

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1

AH
Akai Haruma
Giáo viên
18 tháng 11 2021

Lời giải:

Gọi $d$ là ƯCLN của $(2n+1, 2n-1)$

Ta có: $2n+1\vdots d; 2n-1\vdots d$

$\Rightarrow (2n+1)-(2n-1)\vdots d$ hay $2\vdots d$

$\Rightarrow d=\left\{1;2\right\}$

Nếu $d=2$ thfi $2n+1\vdots 2$ (vô lý vì $2n+1$ lẻ)

$\Rightarrow d=1$

Tức là $2n-1, 2n+1$ nguyên tố cùng nhau.

19 tháng 11 2017

Câu a)

Giả sử k là ước của 2n+1 và n 

Ta có 

\(2n+1⋮k\)

\(n⋮k\)

Suy ra 

\(2n+1⋮k\)

\(2n⋮k\)

Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)

Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)

Mà 2 số trên là 2 số tự nhiên liên tiếp

Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau

Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)

Câu b)

Vì n lẻ nên

(n-1) là số chẵn

(n+1) là số chẵn

(n+2) là số chẵn

(n+5) là số chẵn

Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn

Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)

Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384

Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3

Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384

Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)

Câu c)

Đang thinking .........................................

20 tháng 11 2017

LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!

13 tháng 9 2018

Gọi d là ước chung của 2n+1 và 3n+1

\(\Rightarrow2n+1⋮d,3n+1⋮d\)

\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)

\(\Rightarrow6n+3-6n-2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1.\)

Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

31 tháng 12 2018

Gọi d là ước chung của 2n+1 và 3n+1

⇒2n+1⋮d,3n+1⋮d

⇒3(2n+1)−2(3n+1)⋮d

⇒6n+3−6n−2⋮d

⇒1⋮d⇒d=1.

Vậy với n∈Nthì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.

6 tháng 11 2016

a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3

Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d

=> 2k+1 chia hết cho d; 2k+3 chia hết cho d

=> (2k+1 - 2k-3) chia hết cho d

=> -2 chia hết cho d

=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}

mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1

=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau

b) Gọi ƯCLN(2n+5;3n+7) là d

=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d

3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d

=> (6n+15-6n-14) chia hết cho d

=> 1 chia hết cho d

=> d thuộc Ư(1)

mà d lớn nhất => d = 1

=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

DD
15 tháng 11 2021

Đặt \(\left(2n+1,4n+3\right)=d\).

Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm.