Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Câu a)
Giả sử k là ước của 2n+1 và n
Ta có
\(2n+1⋮k\)
\(n⋮k\)
Suy ra
\(2n+1⋮k\)
\(2n⋮k\)
Suy ra \(2n+1\)là số lẻ (với mọi giá trị n thuộc N)
Suy ra \(2n\)là số chẵn (với mọi giá trị n thuộc N)
Mà 2 số trên là 2 số tự nhiên liên tiếp
Suy ra \(2n+1\)và \(2n\)là 2 số nguyên tố cùng nhau
Vậy \(2n+1\)và \(n\)là 2 số nguyên tố cùng nhau (đpcm)
Câu b)
Vì n lẻ nên
(n-1) là số chẵn
(n+1) là số chẵn
(n+2) là số chẵn
(n+5) là số chẵn
Suy ra (n-1)(n+1)(n+2)(n+5) là số chẵn
Mà nếu n=1 thì (n-1)(n+1)(n+3)(n+5) chia hết tất cả các số tự nhiên (khác 0)
Mà nếu n=3 thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384
Mà nếu n=5 thì thành biểu thức trên bị biến đổi thành (n+1)(n+3)(n+5)(n+7) với n=3
Suy ra n=5 thì biểu thức trên vẫn chia hết cho 384
Vậy nếu n là lẻ thì (n-1)(n+1)(n+3)(n+5) chia hết cho 384 (đpcm)
Câu c)
Đang thinking .........................................
LÊ NHẬT KHÔI ƠI BẠN LÀM CÓ ĐÚNG KO??? GIÚP MÌNH CÂU C VƠI NHA !!!
a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3
Gọi ước chung lớn nhất của 2k+1 và 2k+3 là d
=> 2k+1 chia hết cho d; 2k+3 chia hết cho d
=> (2k+1 - 2k-3) chia hết cho d
=> -2 chia hết cho d
=> d thuộc Ư(-2) => d thuộc {-2; -1; 1; 2}
mà d lớn nhất; số tự nhiên lẻ không chia hết cho 2 => d = 1
=> 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
b) Gọi ƯCLN(2n+5;3n+7) là d
=> 2n+5 chia hết cho d => 3(2n+5) chia hết cho d => 6n+15 chia hết cho d
3n+7 chia hết cho d => 2(3n+7) chia hết cho d => 6n+14 chia hết cho d
=> (6n+15-6n-14) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1)
mà d lớn nhất => d = 1
=> 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
Gọi d là ước chung của 2n+1 và 3n+1
\(\Rightarrow2n+1⋮d,3n+1⋮d\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Rightarrow6n+3-6n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1.\)
Vậy với \(n\in N\)thì 2n+1 và 3n+1 là 2 số nguyên tố cùng nhau.
Đặt \(\left(2n+1,4n+3\right)=d\).
Suy ra \(\hept{\begin{cases}2n+1⋮d\\4n+3⋮d\end{cases}}\Rightarrow\left(4n+3\right)-2\left(2n+1\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
a, Ta phải chứng minh ƯCLN(2n+1 ; 2n+3)=1
đặt : ƯCLN(2n+1;2n+3)=d
Suy ra : 2n+1 chia hết cho d
2n+3 chia hết cho d
Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d
=> d thuộc Ư(2)={1;2}
loại d=2 (vì d khác 2)
=> d = 1
Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau
b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p
Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p
3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p
Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p
=>p= 1
vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau
a,gọi d là UCLN của 2 số trên
ta có 3n+5-2n+3\(⋮\)d
=>2(3n+5)-3(2n+3)\(⋮\)d
6n+10-6n+9\(⋮\)d
=> 1\(⋮\)d=>d=1
=> 2 số trên nguyên tố cùng nhau
a , 3n + 5 và 2n + 3
Gọi ước chung lớn nhất của 3n + 5 và 2n + 3 là d
Ta có : 3n + 5 chia hết cho d , 2n + 3 chia hết cho d
2 ( 3n + 5 ) chia hết cho d , 3 ( 2n + 3 ) chia hết cho d
( 6n + 10 ) - ( 6n + 9 ) chia hết cho d
1 chia hết cho d suy ra d = 1
Vậy 3n + 5 và 2n + 3 nguyên tố cùng nhau ( n thuộc N )
b , 2n ^ 2 + 1 và 2n ^ 2 - 1
Gọi ước chung lớn nhất của 2n ^ 2 + 1 và 2n ^ 2 - 1 là d
Ta có : 2n ^ 2 + 1 chia hết cho d , 2n ^ 2 - 1 chia hết cho d
( 2n ^ 2 + 1 ) - ( 2n ^ 2 - 1 ) chia hết cho d
2n ^ 2 + 1 - 2n ^ 2 + 1 chia hết cho d suy ra 2 chia hết hết cho d nên d thuộc ước của 2
Mà d lẻ ( vì 2n ^ 2 + 1 là lẻ )
Do đó d = 1 suy ra ước chung lớn nhất của 2n ^ 2 + 1 và 2n ^ 2 - 1 bằng 1
Vậy 2n ^ 2 +1 và 2n ^ 2 - 1 nguyên tố cùng nhau
ta có 2n+2 và 2n+3 là hai số tự nhiên liên tiếp và lớn hơn 1
thế nên hai số này nguyên tố cùng nhau