Cho tam giác ABC có AD, BE, CF là các đường phân giác. CMR: \(\frac{AE}{EC}.\frac{CD}{DB}.\frac{BF}{FA}=1\)
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
T
24 tháng 6 2019
#)Giải :
Vì AD,BE,CF là ba đường phân giác
\(\Rightarrow\frac{FA}{FB}=\frac{CA}{CB};\frac{DB}{DC}=\frac{AB}{AC};\frac{EC}{EA}=\frac{BC}{BA}\)
\(\Rightarrow\frac{FA}{FB}.\frac{DB}{DC}.\frac{EC}{EA}=\frac{CA.AB.BC}{CB.AC.BA}=1\left(đpcm\right)\)
24 tháng 6 2019
Tham khảo tại :
Câu hỏi của Phạm Hoàng - Toán lớp 8 | Học trực tuyến
< https://h.vn/hoi-dap/question/555217.html >
~ chúc bn học tốt~
4 tháng 2 2023
DB/DC*EC/EA*FA/FB
\(=\dfrac{AB}{AC}\cdot\dfrac{BC}{BA}\cdot\dfrac{CA}{CB}=1\)
4 tháng 2 2023
DB/DC=AB/AC
EC/EA=BC/BA
FA/FB=CA/CB
=>DB/DC*EC/EA*FA/FB=(AB*BC*AC)/(AC*BA*CB)=1
VT
0
Áp dụng tính chất đường phân giác ta có:
\(\frac{DB}{DC}=\frac{AB}{AC}\left(1\right)\)
\(\frac{EC}{EA}=\frac{BC}{BA}\left(2\right)\)
\(\frac{FA}{FB}=\frac{CA}{CB}\left(3\right)\)
\(\left(1\right)\left(2\right)\left(3\right)\Rightarrow\frac{DB}{DC}\cdot\frac{EC}{AE}\cdot\frac{FA}{FB}=\frac{AB}{AC}\cdot\frac{BC}{BA}\cdot\frac{CA}{CB}=\frac{AB\cdot BC\cdot CA}{AC\cdot BA\cdot CB}=1\)
=> ĐPCM
Nguồn: SGK
AD,BE,CF không là các đường phân giác vẫn đúng,miễn sao chúng đồng quy là OK !