K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2021

\(a,B=4x^2+20x+25-9+x^2+14=5x^2+20x+30\\ b,B=5\left(x^2+4x+4\right)+10\\ B=5\left(x+2\right)^2+10\ge10>0,\forall x\)

Do đó B luôn dương với mọi x

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

2 tháng 4 2021

Ta có \(b=x^2-2x+3=x^2-2x+1+2\)

\(=\left(x-1\right)^2+2>0\forall x\)

1 tháng 3 2018

Bài 1) Chứng minh rằng các biểu thức sau luôn có giá trị âm với mọi giá trị của biến: 
a) 9x^2+12x-15 
=-(9x^2-12x+4+11) 
=-[(3x-2)^2+11] 
=-(3x-2)^2 - 11. 
Vì (3x-2)^2 không âm với mọi x suy ra -(3x-2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -[(3*x)-2]^2-11 < 0 với mọi giá trị của x. 
Hay -9*x^2 + 12*x -15 < 0 với mọi giá trị của x. 

b) -5 – (x-1)*(x+2) 
= -5-(x^2+x-2) 
=-5- (x^2+2x.1/2 +1/4 - 1/4-2) 
=-5-[(x-1/2)^2 -9/4] 
=-5-(x-1/2)^2 +9/4 
=-11/4 - (x-1/2)^2 
Vì (x-1/2)^2 không âm với mọi x suy ra -(x-1/2)^2 nhỏ hơn hoặc bằng 0 vơi mọi x 
Do đó -11/4 - (x-1/2)^2 < 0 với mọi giá trị của x. 
Hay -5 – (x-1)*(x+2) < 0 với mọi giá trị của x. 

Bài 2) 
a) x^4+x^2+2 
Vì x^4 +x^2 lớn hơn hoặc bằng 0 vơi mọi x 
suy ra x^4+x^2+2 >=2 
Hay x^4+x^2+2 luôn dương với mọi x. 

b) (x+3)*(x-11) + 2003 
= x^2-8x-33 +2003 
=x^2-8x+16b + 1954 
=(x-4)^2 + 1954 >=1954 
Vậy biểu thức luôn có giá trị dương với mọi giá trị của biến

1 tháng 3 2018

bị ''rảnh'' ak ? 

tự hỏi r tự trả lời

a: Sửa đề: 1/4x+x^2+2

x^2+1/4x+2

=x^2+2*x*1/8+1/64+127/64

=(x+1/8)^2+127/64>=127/64>0 với mọi x

=>ĐPCM

b: 2x^2+3x+1

=2(x^2+3/2x+1/2)

=2(x^2+2*x*3/4+9/16-1/16)

=2(x+3/4)^2-1/8 

Biểu thức này ko thể luôn dương nha bạn

c: 9x^2-12x+5

=9x^2-12x+4+1

=(3x-2)^2+1>=1>0 với mọi x

d: (x+2)^2+(x-2)^2

=x^2+4x+4+x^2-4x+4

=2x^2+8>=8>0 với mọi x

1 tháng 8 2023

Mình cảm ơn nha

 

18 tháng 9 2023

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

23 tháng 6 2017

a) 

\(=x^2+2.1,5x+1.5^2+0,75\)

\(=\left(x+1.5\right)^2+0,75\)

Vì (x+1.5)^2 luôn dương và 0,75 dương nên biểu thức luôn dương

b) 

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\)

Lập luận tương tự câu a), được biểu thức luôn dương

c)

\(=x^2+2xy+y^2+x^2-2x+1+1\)

\(=\left(x+y\right)^2+\left(x-1\right)^2+1\)

Lập luận tương tự

17 tháng 9 2021

a)\(A=x^2+x+1=\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)

b) \(B=2x^2+2x+1=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)

23 tháng 9 2021

\(E=x^2+2x+15=\left(x^2+2x+1\right)+14=\left(x+1\right)^2+14\ge14>0\forall x\)

23 tháng 9 2021

E=(x2+2x+1)+14=(x+1)2+14

ta có (x+1)2 >=0 với mọi x

suy ra E=(x2+2x+1)+14=(x+1)2+14 >0 với mọi biến x