Giải phương trình:
(1/x^2+4x+3)+(1/x^2+8x+15)+1/x^2+12x+35)=1/9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:\(x\ne-1;-3;-5;-7;-9\)
\(pt\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-...-\frac{1}{x+9}=\frac{2}{5}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)\(\Leftrightarrow\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(\Leftrightarrow2\left(x+1\right)\left(x+9\right)=40\)\(\Leftrightarrow x^2+10x-11=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+11=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}\) (thoả)
Vậy....
Đk:\(x\ne-1;x\ne-3;x\ne-5;x\ne-7\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}\right)=\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{9}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{9}\)\(\Leftrightarrow\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{2}{9}\)
\(\Leftrightarrow2\left(x^2+8x+7\right)=54\)\(\Leftrightarrow x^2+8x+7=27\)
\(\Leftrightarrow x^2+8x-20=0\)\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-10\end{cases}}\)(thỏa mãn)
\(\frac{2}{x^2-4x+3}+\frac{2}{x^2-8x+15}+\frac{2}{x^2-12x+35}=-\frac{1}{2}\)(x khác 1;3;5;7)
<=>\(\frac{2}{x^2-3x-x+3}+\frac{2}{x^2-5x-3x+15}+\frac{2}{x^2-5x-7x+35}=-\frac{1}{2}\)
<=>\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{2}{\left(x-3\right)\left(x-5\right)}+\frac{2}{\left(x-5\right)\left(x-7\right)}=-\frac{1}{2}\)
<=>\(\frac{1}{x-3}-\frac{1}{x-1}+\frac{1}{x-5}-\frac{1}{x-3}+\frac{1}{x-7}-\frac{1}{x-5}=-\frac{1}{2}\)
<=>\(\frac{1}{x-7}-\frac{1}{x-1}=-\frac{1}{2}\)
<=>\(2x-2-2x+14=-x^2+8x-7\)
<=>\(x^2-8x+19=0\)
<=>(x-4)2+3=0(vô lí)
Vậy PT vô nghiệm
xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai
ĐK : \(X\ne-1;-3;-7;-9\)
\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)
\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)
\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)
\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
\(2\left(x+1\right)\left(x+9\right)=40\)
\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)
\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)
\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)
\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn )
Vậy ...............
đk: ... \(\Rightarrow x\ne-1;-3;-5;-7\)
\(pt\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{1}{3}\)
\(\Leftrightarrow\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{2}{\left(x+3\right)\left(x+5\right)}+\frac{2}{\left(x+5\right)\left(x+7\right)}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}=\frac{2}{3}\)
\(\Leftrightarrow\frac{1}{x+1}-\frac{1}{x+7}=\frac{2}{3}\)
\(\Leftrightarrow3\left(x+7-x-1\right)=2\left(x+1\right)\left(x+7\right)\)
\(\Leftrightarrow2x^2+16x+14=18\)
\(\Leftrightarrow2x^2+16x-4=0\)
\(\Delta'=64+8=72>0\)
phương trình có 2 nghiệm phân biệt:
\(x_{1,2}=\frac{-b'\pm\sqrt{\Delta}}{a}=\frac{-8\pm\sqrt{72}}{2}=-4\pm3\sqrt{2}\) (tm)
Vậy...
1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)
\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)
\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)
=>-8x+8=0
hay x=1(nhận)
c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
\(\Leftrightarrow\dfrac{2}{\left(x+1\right)\left(x+3\right)}+\dfrac{2}{\left(x+3\right)\left(x+5\right)}+\dfrac{2}{\left(x+5\right)\left(x+7\right)}+\dfrac{2}{\left(x+7\right)\left(x+9\right)}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+7}+\dfrac{1}{x+7}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+9}=\dfrac{2}{5}\)
\(\Leftrightarrow\dfrac{x+9-x-1}{\left(x+1\right)\left(x+9\right)}=\dfrac{2}{5}\)
=>2(x+1)(x+9)=5*8=40
=>x^2+9x+9=20
=>x^2+9x-11=0
hay \(x=\dfrac{-9\pm5\sqrt{5}}{2}\)
=>x^2+9x
Mình không ghi lại đề:
\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)
\(\frac{2}{\left(x+1\right)\left(x+3\right)}+...+\frac{2}{\left(x+7\right)\left(x+9\right)}=\frac{2}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+...+\frac{1}{x+7}-\frac{1}{x+9}=\frac{2}{5}\)
\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{2}{5}\)
\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)
<=>40=2(x+1)(x+9)
<=>\(x^2+10x-11=0\)
<=>\(\left(x-1\right)\left(x+11\right)=0\)
<=>x=1 hoặc x=-11
Ta có:
\(1^2+\left(-11\right)^2=122\)
Ai thấy mình làm đúng thì tích nha.Ai tích mình mình tích lại
https://olm.vn/hoi-dap/detail/64195114200.html
Bn dưới trl r!!
Chúc bn hc tốt!!