K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2016

\(\frac{2}{x^2-4x+3}+\frac{2}{x^2-8x+15}+\frac{2}{x^2-12x+35}=-\frac{1}{2}\)(x khác 1;3;5;7)

<=>\(\frac{2}{x^2-3x-x+3}+\frac{2}{x^2-5x-3x+15}+\frac{2}{x^2-5x-7x+35}=-\frac{1}{2}\)

<=>\(\frac{2}{\left(x-1\right)\left(x-3\right)}+\frac{2}{\left(x-3\right)\left(x-5\right)}+\frac{2}{\left(x-5\right)\left(x-7\right)}=-\frac{1}{2}\)

<=>\(\frac{1}{x-3}-\frac{1}{x-1}+\frac{1}{x-5}-\frac{1}{x-3}+\frac{1}{x-7}-\frac{1}{x-5}=-\frac{1}{2}\)

<=>\(\frac{1}{x-7}-\frac{1}{x-1}=-\frac{1}{2}\)

<=>\(2x-2-2x+14=-x^2+8x-7\)

<=>\(x^2-8x+19=0\)

<=>(x-4)2+3=0(vô lí)

Vậy PT vô nghiệm

26 tháng 7 2018

xin lỗi nha, bài đó bằng có một cái 1/5 thôi, tại viết sai

26 tháng 7 2018

ĐK : \(X\ne-1;-3;-7;-9\)

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}+\frac{1}{x^2+16x+63}=\frac{1}{5}\)

\(\frac{1}{\left(x+2\right)^2-1}+\frac{1}{\left(x+4\right)^2-1}+\frac{1}{\left(x+6\right)^2-1}+\frac{1}{\left(x-8\right)^2-1}=\frac{1}{5}\)

\(\frac{1}{\left(x+2-1\right)\left(x+2+1\right)}+\frac{1}{\left(x+4-1 \right)\left(x+4+1\right)}+\frac{1}{\left(x+6-1\right)\left(x+6+1\right)}+\frac{1}{\left(x+8-1\right)\left(x+8+1\right)}=\frac{1}{5}\)

\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}+\frac{1}{\left(x+7\right)\left(x+9\right)}=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+....-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{2}\cdot\left(\frac{1}{x+1}-\frac{1}{x+9}\right)=\frac{1}{5}\)

\(\frac{1}{x+1}-\frac{1}{x+9}=\frac{1}{5}:\frac{1}{2}=\frac{2}{5}\)

\(\frac{8}{\left(x+1\right)\left(x+9\right)}=\frac{2}{5}\)

\(2\left(x+1\right)\left(x+9\right)=40\)

\(2x^2+20x+18=40\Leftrightarrow x^2+10x+9=20\)

\(\Leftrightarrow x^2+10x-11=0\Leftrightarrow x^2+10x-10-1=0\)

\(\Leftrightarrow\left(x^2-1\right)+\left(10x-10\right)=0\Leftrightarrow\left(x-1\right)\left(x+1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+11\right)=0\)

\(\orbr{\begin{cases}x-1=0\\x++11=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-11\end{cases}}}\)( Thõa mãn ) 

Vậy ...............

3 tháng 2 2019

a) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=x+\frac{7}{12}\)

\(\frac{3.3\left(2x+1\right)}{12}-\frac{2\left(5x+3\right)}{12}+\frac{4\left(x+1\right)}{12}=\frac{12x+7}{12}\)

\(18x+9-10x-6+4x+4=12x+7\)

\(0x=0\) ( vô số nghiệm )

Vậy x \(\in\)R

b) ĐKXĐ :  x \(\ne\)-1;-3;-5;-7

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)

\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)

\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)

\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)

\(\left(x+1\right)\left(x+7\right)=16\)

Ta thấy x+1 và x+7 là 2 số cách nhau 6 đơn vị . Mà x + 1 < x + 7

\(\Rightarrow\)\(\hept{\begin{cases}x+1=2\\x+7=8\end{cases}\Rightarrow x=1}\)

hoặc \(\hept{\begin{cases}x+1=-2\\x+7=-8\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=-15\end{cases}}\)( loại )

Vậy x = 1

14 tháng 2 2018

 ĐKXĐ:    \(x\ne-1;\) \(x\ne-3;\)\(x\ne-5;\)\(x\ne-7\)

           \(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)

 \(\Leftrightarrow\)\(\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)

\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{x+1}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+7}\right)=\frac{3}{16}\)

\(\Leftrightarrow\)\(\frac{1}{x+1}-\frac{1}{x+7}=\frac{3}{8}\)

\(\Leftrightarrow\)\(\frac{6}{\left(x+1\right)\left(x+7\right)}=\frac{3}{8}\)

\(\Rightarrow\)\(3\left(x+1\right)\left(x+7\right)=48\)

\(\Leftrightarrow\)\(x^2+8x+7=16\)

\(\Leftrightarrow\)\(x^2+8x-9=0\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(x-9\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=9\left(TMĐKXĐ\right)\end{cases}}\)

Vậy...

14 tháng 2 2018

\(\frac{1}{x^2+4x+3}+\frac{1}{x^2+8x+15}+\frac{1}{x^2+12x+35}=\frac{3}{16}\)

\(\Leftrightarrow\frac{1}{x^2+x+3x+3}+\frac{1}{x^2+3x+5x+15}+\frac{1}{x^2+5x+7x+35}=\frac{3}{16}\)

\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+5\right)}+\frac{1}{\left(x+5\right)\left(x+7\right)}=\frac{3}{16}\)

\(\Leftrightarrow\frac{\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)

\(=\frac{3\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}{\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)}\)

Mẫu của mỗi phân thức bằng nhau nên => tử của mỗi phân thức cũng phải bằng nhau

=> Đến đây thì dễ rồi, bạn giải ra tìm x

2 tháng 1 2018

=>\(\frac{\left(x+2\right)^2+2}{x+2}+\frac{\left(x+8\right)^2+8}{x+8}\)=\(\frac{\left(x+4\right)+4}{x+4}+\frac{\left(x+6\right)^2+6}{x+6}\)

=>2x+10+\(\frac{2}{x+2}+\frac{8}{x+8}\)=2x+10+\(\frac{4}{x+4}+\frac{6}{x+6}\)

=>-x\(\left(\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}+\frac{1}{x+8}\right)\)=0

=>\(\orbr{\begin{cases}x=0\\\frac{1}{x+2}-.....+\frac{1}{x+8}=0\end{cases}}\)

Voi \(\frac{1}{x+2}-....\)=0 ta co

Dat x+5=t

=>\(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}\)=0

=> \(2t\left(\frac{1}{t^2-1}+\frac{1}{t^2-9}\right)=0\)

=>t=0

=>x=-5

Vay phuong trinh co nghiem x=0;-5

2 tháng 1 2018

toán lớp 8 mà đi giải phương trình hả má

11 tháng 3 2018

=> \(\frac{(x+2)^2+2}{x+2}+\frac{(x+8)^2+8}{x+8}=\frac{(x+4)+4}{x+4}+\frac{(x+6)^2+6}{x+6}\)

=> 2x + 10 + \(\frac{2}{x+2}+\frac{8}{x+8}=2x+10+\frac{4}{x+4}+\frac{6}{x+6}\)

=>-x \((\frac{1}{x+2}-\frac{1}{x+4}-\frac{1}{x+6}-\frac{1}{x+8})=0\)

                              \(x=0\)

\(=>\orbr{\frac{1}{x+2}}-.....+\frac{1}{x+8}=0\)

Với \(\frac{1}{x+2}-...=0\). Ta có :

Đặt x + 5 = t

=> \(\frac{1}{t-3}-\frac{1}{t-1}-\frac{1}{t+1}+\frac{1}{t+3}=0\)

\(=>2t(\frac{1}{t^2-1}+\frac{1}{t^2-9})=0\)

=> t = 0

=> x = -5

Vậy phương trình có nghiệm x= 0 ; - 5

27 tháng 5 2020

ĐK: x khác 1; - 1

\(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}.\)

<=> \(\frac{6}{x^2-1}+5=\frac{8x-1}{4x+4}+\frac{12x-1}{4x-4}.\)

<=> \(\frac{6.4}{4\left(x^2-1\right)}+\frac{5\left(x^2-1\right)}{4\left(x^2-1\right)}=\frac{\left(8x-1\right)\left(x-1\right)}{4\left(x^2-1\right)}+\frac{\left(12x-1\right)\left(x+1\right)}{4\left(x^2-1\right)}.\)

<=> \(24+20x^2-20=8x^2-x-8x+1+12x^2-x+12x-1\)

<=> \(2x=4\)

<=> x = 2 thỏa mãn.

15 tháng 3 2018

x= 2125500 và x = 0 là nghiệm của phương trình