Cho tam giác BFC cân tại B. Kẻ FE vuông góc BC tại E, CA vuông góc BF tại A
a) Chứng minh tam giác BEF = tam giác BAC
b) FE cắt CA tại D. Chứng minh BD là tia phân giác của góc ABC
c) Gọi M là trung điểm của FC. Chứng minh BM vuông góc AE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét tam giác BAC và tam giác BEF có:
^BAC = ^BEF ( = 90o )
cạnh huyền BC = BF
góc nhọn: ^B chung.
=> Tam giác BAC = tam giác BEF ( cạnh huyền - góc nhọn )
b) Ta có: ^BFD + ^DFC = ^BFC
^BCA + ^ACF = ^BCF
hay ^BCA = ^BFE ( Do tam giác BAC = tam giác BEF )
^BCF = ^BFC
=> ^DFC = ^DCF
=> Tam giác DFC cân tại D
=> DF = DC
Xét tam giác BDF và tam giác BDC có:
BF = BC
DF = DC
BD chung
=> Tam giác BDF = tam giác BDC
=> ^FBD = ^CBD
=> BD là tia phân giác của góc FBC
c) Vì Tam giác FBC cân tại B
mà BM trung tuyến
=> BM là đường cao
=> BM vuông góc với FC
Vì AB = BE ( Do tam giác BAC = tam giác BFE )
=> Tam giác ABE cân tại B
=> ^ABE = ( 180o - ^FBC )/2 (1)
Vì Tam giác BFC cân tại B
=> ^BFC = ( 180o - ^FBC )/2 (2)
Từ (1) và (2) => ^ABE = ^BFC
Mà hai góc này vị trí đồng vị
=> AE // FC
Mà BM vuông góc FC
=> BM vuông góc với AC ( đpcm )
# Học tốt #
a ) Xét 2 tam giác vuông \(\Delta BEF\) và \(\Delta BAC\) có :
\(BF=BC\) ( do \(\Delta BFC\) cân đỉnh B )
\(\widehat{B}\) : chung
\(\Rightarrow\Delta BEF=\Delta BAC\) (cạnh huyền-góc nhọn).
b ) Theo câu a ) ta có : \(\Delta BEF=\Delta BAC\) \(\Rightarrow\widehat{BFE}=\widehat{BCA}\) (hai góc tương ứng)
Mà \(\Delta BFC\) cân đỉnh B nên : \(\widehat{BFC}=\widehat{BCF}\)
\(\widehat{BFC}-\widehat{BFE}=\widehat{BCF}-\widehat{BCA}\)
\(\Rightarrow\widehat{EFC\:}=\widehat{ACF}\)
Hay \(\widehat{DFC}=\widehat{DCF}\) \(\Rightarrow\Delta DFC\) cân đỉnh D \(\Rightarrow DF=DC\)
Xét \(\Delta BFD\) và \(\Delta BCD\) có :
\(BF=BC\left(gt\right)\)
\(BD\) : chung
\(DF=DC\left(cmt\right)\)
\(\Rightarrow\Delta BFD=\Delta BCD\left(c.c.c\right)\)
\(\Rightarrow\widehat{FBD}=\widehat{CBD}\) (hai góc tương ứng)
\(\Rightarrow BD\) là phân giác của \(\widehat{FBC}\)
c ) Ta có \(\Delta BEF=\Delta BAC\)( câu a )
\(\Rightarrow BE=BA\) ( 2 cạnh tương ứng )
\(\Rightarrow BF-BA=BC-BE\) hay AF = EC
Xét \(\Delta AFM\)và \(\Delta ECM\) có :
\(FM=CM\) ( vì M là trung điểm cạnh FC )
\(\widehat{AFM}=\widehat{ECM}\left(gt\right)\)
AF = EC ( cmt )
=> \(\Delta AFM=\Delta ECM\left(c.g.c\right)\)
\(\Rightarrow MA=ME\) lại có BA = BE \(\Rightarrow MB\) là trung trực của AE
\(\Rightarrow MB\perp AE\) ( đpcm )
a) Xét hai tam giác vuông ΔBEF và ΔBAC
có:
BF=BC
(do ΔBFC
cân đỉnh B)
ˆB
chung
⇒ΔBEF=ΔBAC
(cạnh huyền-góc nhọn).
b) ΔBEF=ΔBAC⇒ˆBFE=ˆBCA
(hai tương ứng)
Mà ΔBFC
cân đỉnh B nên: ˆBFC=ˆBCF
ˆBFC−ˆBFE=ˆBCF−ˆBCA
⇒ˆEFC=ˆACF
hay ˆDFC=ˆDCF⇒ΔDFC cân đỉnh D⇒DF=DC
Xét ΔBFD
và ΔBCD
có:
BF=BC
(giả thiết)
BD
chung
DF=DC
(cmt)
⇒ΔBFD=ΔBCD
(c.c.c)
⇒ˆFBD=ˆCBD
(hai góc tương ứng)
⇒BD
là phân giác ˆFBC
.
c) ΔBEF=ΔBAC⇒BE=BA
⇒BF−BA=BC−BE
hay AF=EC
Xét ΔAFM
và ΔECM
có:
FM=CM
(do M là trung điểm cạnh FC)
ˆAFM=ˆECM
(giả thiết)
AF=EC
(cmt)
⇒ΔAFM=ΔECM
(c.g.c)
⇒MA=ME
lại có BA=BE⇒MB là trung trực của AE
⇒MB⊥AE
.
a) Xét 2 tam giác BEF và BAC có :
BF = BC ( Tam giác BCF cân tại B )
Góc B chung
=> Tam giác BEF = BAC ( ch-gn )
b) Vì tam giác BEF = BAC ( cmt )
-> Góc BFE = góc BCA ( 2 góc t/ứng )
Mà tam giác BCF cân tại B
=> BFC = BCF
BFC - BFE = BCF - BCA
\(\Rightarrow\widehat{EFC\:}=\widehat{ACF} hay \widehat{DFC}=\widehat{DCF}\)
=> Tam giác DFC cân tại đỉnh D
=> DF = DC
Xét tam giác BFD và BCD có :
BF = BC ( gt )
BD chung
DF = DC ( cmt )
=> = nhau ( c.c.c)
=> FBD = CBD ( 2 góc t/ứng )
=> BD là tia phân giác của góc ABC
c) Vì tam giác BEF = BAC
=> BE = BA
=> BF - BA = BC - BE hay AF = EC
Xét tam giác AFM và ECM có :
FM = CM ( do M là trg điểm FC )
AFM = ECM ( gt )
AF = EC ( cmt )
=> = nhau ( c.g.c )
=> MA = ME lại có BA = BE
=> MB là trg trực của AE
=> BM vuông góc AE