K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Gọi ƯCLN của n+2 và 2n+3 là d

Ta có:

\(n+2⋮d;2n+3⋮d\)

\(\Rightarrow2n+4⋮d;2n+3⋮d\)

\(\Rightarrow2n+4-2n-3⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

Suy ra \(\left(n+2;2n+3\right)=1\Rightarrow\frac{n+2}{2n+3}\) là phân số tối giản

\(\Leftrightarrow\left\{{}\begin{matrix}2n+6⋮a\\2n+5⋮a\end{matrix}\right.\Leftrightarrow a=1\)

Vậy: 2n+5/n+3 là một phân số tối giản

9 tháng 12 2021

gọi d là ước chung của n+3 và 2n+5 với d∈N

⇒n+3⋮d và 2n+5⋮d

⇒(n+3)-(2n+5)⋮d ⇒2(n+3)-(2n+5)⋮d⇔1⋮d⇒d=1∈N

⇒ƯC(n+3 và 2n+5)=1

⇒ƯCLN(n+3 và 2n+5)=1⇒\(\dfrac{2n+5}{n+3}\),(n∈N) là phân số tối giản

28 tháng 3 2019

Gọi UCLN (4n+7; 2n+3) là d

ta có: 4n + 7 chia hết cho d

2n + 3 chia hết cho d => 4n + 6 chia hết cho d

=> 4n + 7 - 4n - 6 chia hết cho d

=> 1 chia hết cho d

=> (4n+7)/(2n+3) là p/s tối giản

28 tháng 3 2019

Muốn chứng tỏ phân số \(\frac{4n+7}{2n+3}\)là phân số tối giản thì ta phải chứng minh được ( 4n+7; 2n + 3 ) = 1

Gọi d là ƯCLN( 4n + 7; 2n + 3 ). Ta có:

\(\hept{\begin{cases}4n+7⋮d\\2n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+7⋮d\\4n+6⋮d\end{cases}}}\)

\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

=> Phân số \(\frac{4n+7}{2n+3}\)tối giản. ( ĐPCM )

14 tháng 3 2016

Gọi ƯCLN(n+1;2n+3)=d

=>n+1 chia hết cho d=>2(n+1) chia hết cho d hay 2n+2 chia hết cho d

=>2n+3 chia hết cho d

=>2n+3-(2n+2) chia hết cho d

=>1 chia hết cho d hay d=1

Do đó, ƯCLN(n+1;2n+3)=1

Vậy (n+1)/(2n+3) (nEN)là p/s tối giản

24 tháng 5 2017

Gọi \(d=ƯCLN\left(n+1;2n+3\right)\)

Do đó \(d\inƯC\left(n+1;2n+3\right)\)

\(\Rightarrow n+1⋮d;2n+3⋮d\)

\(\Rightarrow2n+2⋮d;2n+3⋮d\)

\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow\) n+1 và 2n+3 là hai số nguyên tố cùng nhau.

Vậy phân số \(\dfrac{n+1}{2n+3}\) tối giản với \(\forall n\in N\).

18 tháng 3 2018

Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...

18 tháng 3 2018

Bài 1 : 

Ta có : 

\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)

Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)

\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)

\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)

\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)

\(\Rightarrow\)\(\left(-1\right)⋮d\)

\(\Rightarrow\)\(d\inƯ\left(1\right)\)

Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)

\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)

Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n 

Chúc bạn học tốt ~ 

14 tháng 8 2018

Giả sử phân số trên chưa tối giản

Gọi \(ƯCLN\)(2n + 5 ; n + 3) là : d( d > 1)

\(\Rightarrow2n+5⋮d;n+3⋮d\)

\(\Rightarrow2\left(n+3\right)⋮d\Rightarrow2n+6⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy p/s trên tối giản

14 tháng 8 2018

Bài giải:

Để \(\frac{2n+5}{n+3}\)là phần số tối giản <=>ƯCLN(2n + 5; n + 3) = {1; -1}

Gọi d là ƯCLN(2n + 5; n + 3)

=>  2n + 5 \(⋮\)d

=>   n + 3 \(⋮\)d => 2(n + 3) \(⋮\)​ d => 2n + 6\(⋮\)d

=>  (2n + 6) - (2n + 5) = 1 \(⋮\)d => d \(\in\){1; -1}

Vậy 2n + 5/n + 3 là phân số tối giản

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:

Giả sử phân số đã cho không tối giản.
Gọi $p$ là ước nguyên tố chung của của $n^3+2n, n^4+3n^2+1$

$\Rightarrow n^3+2n\vdots p$
$\Rightarrow n(n^2+2)\vdots p$

$\Rightarrow n\vdots p$ hoặc $n^2+2\vdots p$.

Nếu $n\vdots p$. Kết hợp với $n^4+3n^2+1\vdots p\Rightarrow 1\vdots p$

$\Rightarrow p=1$ (không tm vì $p$ là snt) 

Nếu $n^2+2\vdots p$.

Kết hợp với $n^4+3n^2+1\vdots p$

$\Rightarrow n^2(n^2+2)+(n^2+2)-1\vdots p$

$\Rightarrow 1\vdots p\Rightarrow p=1$ (không tm vì $p$ là snt)

Vậy điều giả sử không đúng.

$\Rightarrow$ phân số đã cho tối giản.

19 tháng 6 2017

Gọi d là UCLN(n+3,2n+5)

=> n+3:d , 2n+5:d

=>2n+6:d , 2n+5:d

=>2n+6 - 2n+5 :d

=> 1: d

Vậy n+3/2n+5 là phan so toi gian

Minh nhanh nhat nen cho minh nhe

28 tháng 2 2018

gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)

\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)

\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)

\(\Rightarrow2n+6-2n-5⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản

14 tháng 3 2023

Không có mô tả.