Cho hình vuông ABCD. Gọi M; N là trung điểm của AB và BC. Các đường thẳng DN
và CM cắt nhau tại I. Chứng minh:
a/ DN vuông góc với CM
b/ ΔAID cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+)CD⊥SA do SA vuông với ABCD
CD⊥AD( tính chất hình vuông)
=>CD⊥(SAD)=>CD⊥AN mà SD⊥AN=> AN⊥(SDC)=>AN⊥SC(1)
+) BC⊥SA do SA vuông với ABCD
BC⊥AB( tính chất hình vuông)
=>BC⊥(SAB)=>BC⊥AM mà SB⊥AM=> AM⊥(SAB)=>AM⊥SC(2)
TỪ 1 và 2 => SC⊥(AMN) đpcm
Trên tia đối của tia DC lấy E sao cho DE=BM
Xét ΔABM vuông tại B và ΔADE vuông tại D có
AB=AD
BM=DE
=>ΔABM=ΔADE
=>AM=AE
góc BAM+góc MAN+góc NAD=góc BAD=90 độ
=>góc BAM+góc NAD=45 độ
=>góc EAN=45 độ
Xét ΔEAN và ΔMAN có
AE=AM
góc EAN=góc MAN
AN chung
=>ΔEAN=ΔMAN
=>EN=MN
C CMN=CM+MN+CN
=CM+MN+CN
=CM+ED+DN+CN
=CM+BM+DN+CN
=BC+CD=1/2*C ABCD
Dựng hình như hình vẽ (E, P, Q, N lần lượt là trung điểm các cạnh)
\(MN||AB\Rightarrow N\in\left(MCD\right)\)
F là giao điểm MN và SE \(\Rightarrow\) F cũng là trung điểm SE
Do tính đối xứng của chóp đều \(\Rightarrow MP=NP\Rightarrow PF\perp MN\) (trung tuyến đồng thời là đường cao)
\(\Rightarrow PF\perp\left(SAB\right)\) (do MN là giao tuyến của 2 mp vuông góc)
\(\Rightarrow PF\perp SE\Rightarrow\Delta SEP\) cân tại P (PF là trung tuyến kiêm đường cao)
\(\Rightarrow\Delta SEP\) đều (do chóp đều nên SEP cũng cân tại S)
\(\Rightarrow SO=a\sqrt{3}\)
MN song song và bằng 1/2 AB (đường trung bình)
OQ song song và bằng 1/2 AB (hiển nhiên)
\(\Rightarrow MNQO\) là hbh \(\Rightarrow OM||NQ\Rightarrow OM||\left(SBC\right)\)
\(\Rightarrow d\left(OM;SB\right)=d\left(OM;\left(SBC\right)\right)=d\left(O;\left(SBC\right)\right)\)
Từ O kẻ \(OH\perp SQ\Rightarrow OH=d\left(O;\left(SBC\right)\right)\)
\(\dfrac{1}{OH^2}=\dfrac{1}{OQ^2}+\dfrac{1}{SO^2}=\dfrac{1}{a^2}+\dfrac{1}{3a^2}\Rightarrow OH\)
Dạ em có đáp án rồi, em cảm ơn