Một chiếc tivi hình chữ nhật màn hình phẳng 75 inch (đường chéo tivi dài 75 inch) có góc tạo bởi chiều rộng và đường chéo là 53 08'o. Hỏi chiếc tivi ấy có chiều dài, chiều rộng là bao nhiêu cm? Biết 1 inch = 2,54cm. (Kết quả làm tròn đến chữ số thập phân thứ nhất)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hai cạnh của tivi và đường chéo tạo thành một tam giác vuông nên:
Độ dài đường chéo chính là cạnh huyền:
Áp dụng định lý Py-ta-go ta có được độ dài đường chéo tivi là:
\(\sqrt{72^2+120^2}=24\sqrt{34}\left(cm\right)=24\sqrt{34}:2,54=55,1\left(inch\right)\)
Độ dài đường chéo là:
\(\sqrt{72^2+120^2}=24\sqrt{34}\left(cm\right)\simeq55,10\left(inch\right)\)
Gọi chiều dài, chiều rộng lần lượt là a(inch) và b(inch)
Chiều dài, chiều rộng lần lượt tỉ lệ với 16 và 9 nên a/16=b/9
Đặt \(\dfrac{a}{16}=\dfrac{b}{9}=k\)
=>a=16k; b=9k
Kích thước đường chéo là 55inch nên \(a^2+b^2=55^2\)
=>\(\left(16k\right)^2+\left(9k\right)^2=55^2\)
=>\(256k^2+81k^2=55^2\)
=>\(k^2=\dfrac{3025}{337}\)
=>\(k=\dfrac{55}{\sqrt{337}}\)
=>\(a=16\cdot\dfrac{55}{\sqrt{337}}=\dfrac{880}{\sqrt{337}};b=9\cdot\dfrac{55}{\sqrt{337}}=\dfrac{495}{\sqrt{337}}\)
=>\(a=\dfrac{880}{\sqrt{337}}inch\simeq121,76\left(cm\right)\)
\(b=\dfrac{495}{\sqrt{337}}inch=68,49\left(cm\right)\)
Độ dài đường chéo của ti vi là:
2,54 x 49 = 124,46 cm
Làm tròn độ dài đường chéo với độ chính xác d = 0,05 tức là làm tròn tới hàng phần mười.
Xét 124,46 ta có 6 > 5 nên ta làm tròn lên
Vậy 124,46 cm làm tròn với độ chính xác d = 0,05 thì độ dài đường chéo ti vi là 124,5 cm
Kết luận: Khi làm tròn với độ chính xác d = 0,05 thì độ dài đường chéo ti vi 49 inch là 124,5 cm
1inch = 2,54cm
⇒ 25inch = 25.2,54 = 63,5cm
→ Các phương án A, B, C đều sai
D - đúng
Đáp án: D
Ta có 21 in ≈ 21. 2,54 ≈ 53,34 cm.
Làm tròn đến hàng đơn vị ta được 53cm. (chữ số bỏ đi thứ 2 là 3 < 5)
Vậy đường chéo màn hình của chiếc tivi 21 in dài khoảng 53cm.
Theo đề: \(\dfrac{BC}{AB}=\dfrac{16}{9}\Rightarrow BC=\dfrac{16}{9}AB\)
Ta có: \(AC^2=AB^2+BC^2\Rightarrow AC=\sqrt{AB^2+BC^2}\)
\(=\sqrt{AB^2+\left(\dfrac{16}{9}AB\right)^2}=\sqrt{\dfrac{337}{81}AB^2}=\dfrac{\sqrt{337}}{9}AB\)
\(\Rightarrow50=\dfrac{\sqrt{337}}{9}AB\Rightarrow AB\approx24,5\) (inch) \(=62,23\left(cm\right)\)
\(\Rightarrow BC\approx110,6\left(cm\right)\)
Độ dài đường chéo là:
\(\sqrt{72^2+120^2}=24\sqrt{34}\left(cm\right)\simeq55,1\left(inch\right)\)