K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bđt phụ sai mà cũng ko đc chuẩn hóa

23 tháng 8 2017

\(\frac{ab}{a^2+b^2}\le\frac{ab}{2ab}=\frac{1}{2}\)

tương tự \(\frac{\Rightarrow ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ac}{a^2+c^2}\le\frac{3}{2}\)

=>Thắng Nguyễn :cm theo cách đó sai

14 tháng 3 2016

Sử dụng bất đẳng thức  \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)  với ba số  \(a,b,c\)  và ba số  dương \(x,y,z\)  bất kỳ với chú ý rằng  \(a^2b^2c^2=1\), ta có:

 \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{b^2c^2}{a\left(b+c\right)}+\frac{c^2a^2}{b\left(c+a\right)}+\frac{a^2b^2}{c\left(a+b\right)}\ge\frac{\left(ab+bc+ca\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)  \(\left(1\right)\)

Đặt  \(x=ab;\)  \(y=bc;\)  và  \(z=ca\)  thì  \(xyz=1\)  \(\left(2\right)\) với  \(x;\)\(y;\) và  \(z\)  \(>0\)  

Khi đó áp dụng BĐT Cauchy cho bộ ba số nguyên dương \(x;\)\(y;\) và  \(z\), ta được:

\(x+y+z\ge3\sqrt[3]{xyz}\)  \(\Leftrightarrow\)  \(x+y+z\ge3\)  (do  \(\left(2\right)\)), tức  \(ab+bc+ca\ge3\)  \(\left(3\right)\)

Từ  \(\left(1\right);\)  \(\left(3\right)\) ta suy ra   \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\ge\frac{3}{2}\)  \(\left(đpcm\right)\)

Dấu  \("="\)  xảy ra  khi và chỉ khi  \(a=b=c=1\)

14 tháng 3 2016

thông điệp nhỏ :

hãy tích nếu như ko muốn tích 

ai tích mình tích lại nh nha 

30 tháng 7 2020

1. Áp dụng BĐT Cauchy dạng Engle, ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\left(\frac{9}{a+b+c}\right)\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

30 tháng 7 2020

\(\frac{1}{3}\left(a^3+b^3+a+b\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\frac{1}{3}\left(a+b\right)\left(a^2+b^2+1-ab\right)+ab\le a^2+b^2+1\)

\(\Leftrightarrow\left(a^2+b^2+1\right)\left(\frac{a+b}{3}-1\right)-ab\left(\frac{a+b}{3}-1\right)\le0\)

\(\Leftrightarrow\left(a^2+b^2+1-ab\right)\left(\frac{a+b}{3}-1\right)\le0\)

Vì a, b dương \(\Rightarrow a^2+b^2+1-ab>0\Rightarrow\left(\frac{a+b}{3}-1\right)\le0\Leftrightarrow a+b\le3\)

\(M=\frac{a^2+8}{a}+\frac{b^2+2}{b}=a+\frac{8}{a}+b+\frac{2}{b}=2a+2b+\frac{8}{a}+\frac{2}{b}-\left(a+b\right)\ge8+4-3=9\)

Áp dụng BĐT Cauchy cho a ; b dương

Dấu "=" xảy ra \(\Leftrightarrow a=2;b=1\)

25 tháng 3 2018

BĐT\(\Leftrightarrow\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(a+c\right)}+\frac{abc}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{c}.\frac{1}{a}+\frac{1}{c}.\frac{1}{a}+\frac{1}{b}}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\). Áp dụng BĐT: AM-GM ta có:

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

\(\frac{b^2}{a+b}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+b}.\frac{a+b}{4}}=b\)

\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}+\frac{a+b}{4}}=c\)

Cộng theo vế 3 BĐT trên ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)

Dấu bằng = xảy ra khi a = b = c = 1

5 tháng 8 2020

Đặt  \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow xyz=1;x>0;y>0;z>0\)

Ta cần chứng minh bất đẳng thức sau : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức Bunhiacopxki cho 2 bộ số :

\(\left(\sqrt{y+z};\sqrt{z+x};\sqrt{x+y}\right);\left(\frac{x}{\sqrt{y+z}};\frac{y}{\sqrt{z+x}};\frac{z}{\sqrt{x+y}}\right)\)

Ta có : \(\left(x+y+z\right)^2\le\left(x+y+z+x+y+z\right)A\)

\(\Rightarrow A\ge\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\left(Q.E.D\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\Leftrightarrow a=b=c=1\)

17 tháng 12 2020
Dăm ba bài toán EZ, đáp án là: "Ăn Cứt" ok
17 tháng 12 2020

Méo bt trẩu là gì à =))

Bảo ezzz thì chỉ hộ cách làm ko bt thì đừng cư xử như 1 đứa trẻ trâu=))