K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2022

a,Ta có: tam giác ABC cân tại A
           =>AB=AC
  Xét tam giác AHB và tam giác AHC có:
         góc AHB=góc AHC=90 độ
        AB=AC(cmt)
        AH chung
=>tam giác AHB=tam giác AHC(cạnh huyền-cạnh góc vuông)
=>góc BAH=góc CAH(2 góc tương ứng)
=>AH là tia phân giác của góc BAC
 (bít lm mỗi câu a, thông cảm)

2 tháng 4 2022

đây ko phải là toán lớp 6 .-.

a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là đường phân giác

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

DO đó; ΔAMH=ΔANH

Suy ra: AM=AN và HM=HN

=>AH là đường trung trực của MN

hay AH\(\perp\)MN

4 tháng 5

c, Xét ▲AMK và ▲ANK có:                

Góc K1 = K2 ( Ah vuông với Mn)

Ak chung

A1=A2 (cmt)

Sra ▲AMK = ▲ANK ( cgv-gn)

Do đó MK = NK ( 2 cạnh tương ứng)

Xét ▲NMP có: 

NH là trung tuyến (do HM=HP)

PK là trung tuyến ( do MK = NK) cmt (1)

Suy ra Q là trọng tâm △NMP (2)

Từ (1) và (2) suy ra P,Q,K thẳng hàng

a: Xét ΔAHC vuông tại H và ΔAHB vuông tại H có

AB=AC

AH chung

Do đó: ΔAHC=ΔAHB

Suy ra: \(\widehat{AHC}=\widehat{AHB}\)

b: Xét tứ giác BNCM có 

H là trung điểm của BC

H là trung điểm của NM

Do đó: BNCM là hình bình hành

Suy ra: BN//CM

hay BN//AC

12 tháng 3 2018

a) Do ABC là tam giác cân tại A nên AH là đường cao hay đồng thời là đường phân giác.

Xét tam giác vuông AMH và tam giác vuông ANH có:

Cạnh AH chung

\(\widehat{MAH}=\widehat{NAH}\)

\(\Rightarrow\Delta AMH=\Delta ANH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow HM=HN.\)

b) Dễ dàng thấy ngay AC là đường trung trực của HF.

Khi đó thì AH = AF; CH = CF

Xét tam giác AHC và tam giác AFC có:

Cạnh AC chung

AH - AF

CH = CF

\(\Rightarrow\Delta AHC=\Delta AFC\left(c-c-c\right)\)

\(\Rightarrow\widehat{AFC}=\widehat{AHC}=90^o\Rightarrow AF\perp CF.\)

c) Ta thấy ngay \(\Delta HIN=\Delta FCN\left(g-c-g\right)\)

\(\Rightarrow IN=CN\)

Xét tam giác vuông INF và tam giác vuông CNH có:

HN = FN

IN = CN

\(\Rightarrow\Delta INF=\Delta CNH\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{IFN}=\widehat{CHN}\)

Mà chúng lại ở vị trí so le trong nên IF // BC.

d) Chứng minh tương tự câu c, ta có IE // BC

Vậy thì qua I có hai tia IE và IF cùng song song với BC nên chúng trùng nhau.

Vậy I, E, F thẳng hàng.

10 tháng 9 2021

các bạn giúp mik với!!!!

a: BC=căn 6^2+8^2=10cm

AH=6*8/10=4,8cm

c:

Xét tứ giác ANHM có

góc ANH=góc AMH=góc MAN=90 độ

=>ANHM là hình chữ nhật

AD vuông góc MN

=>góc DAC+góc ANM=90 độ

=>góc DAC+góc AHM=90 độ

=>góc DAC+góc ABC=90 độ

=>góc DAC=góc DCA

=>DA=DC 

góc DAC+góc DAB=90 độ

góc DCA+góc DBA=90 độ

mà góc DAC=góc DCA

nên góc DAB=góc DBA

=>DA=DB

=>DB=DC

=>D là trung điểm của BC