Một ô tô dự định đi từ A đến B với vận tốc đã định. Nếu ô tô đó tăng vận tốc thêm 10km mỗi giờ thì đến B sớm hơn dự định 1 giờ 24 phút, nếu ô tô đó giảm vận tốc đi 5km mỗi giờ thì đến B muộn hơn 1 giờ. Tính độ dài quãng đường AB và vận tốc dự định. (Dùng hệ pt để giải)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
ĐỔi 1h24' thành 1,4h
Gọi vận tốc dự định là $a$ (km/h). ĐK: $a>5$
Thời gian dự định là: $\frac{AB}{a}$ (h)
Theo bài ra ta có:
$\frac{AB}{a+10}=\frac{AB}{a}-1,4$
$\frac{AB}{a-5}=\frac{AB}{a}+1$
\(\Leftrightarrow \left\{\begin{matrix} \frac{10AB}{a(a+10)}=1,4\\ \frac{5AB}{a(a-5)}=1\end{matrix}\right.\Rightarrow \frac{2(a-5)}{a+10}=1,4\Rightarrow a=40\) (km/h)
Độ dài quãng đường $AB$ là: \(AB=\frac{1,4a(a+10)}{10}=\frac{1,4.40.50}{10}=280\) (km)
Gọi x(km/h) là vận tốc dự định của ô tô đi từ A đến B
y(h) là thời gian dự định của ô tô đi từ A đến B
đk: x>10 , y>1
xy(km) là quãng đường từ A đến B
Nếu vận tốc tăng 20 km/h thì thời gian giảm 1h nên ta có phương trình:
xy=(x+20)(y-1) (1)
Nếu vận tốc giảm 10km/h thì thời gian tăng 1h nên ta có phương trình:
xy=(x-10)(y+1) (2)
Từ (1) và (2) ta có hệ phương trình:
{xy=(x+20)(y−1)xy=(x−10)(y+1)⇔{xy=xy−x+20y−20xy=xy+x−10y−10{xy=(x+20)(y−1)xy=(x−10)(y+1)⇔{xy=xy−x+20y−20xy=xy+x−10y−10
⇔{x−20y=−20−x+10y=−10⇔{−10y=−30−x=10y=−10⇔{x−20y=−20−x+10y=−10⇔{−10y=−30−x=10y=−10
y=3\\-x+10.3=-10
\Vậy vận tốc dự định của ô tô là 40km/h; thời gian dự định của ô tô là 3h
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi vận tốc ô tô dự định đi từ A đến B là \(x\) (km/h). ĐK: \(x>5\)
Gọi thời gian ô tô dự định đi từ A đến B là \(y\) (h). ĐK: \(y>0\)
Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)
Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)
Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)
Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)
Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)
Khi đó ô tô đến B B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)
Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)
Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)
Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)
Vận tốc ô tô dự định đi từ A đến B là 50 km/h
Thời gian ô tô dự định đi từ A đến B là 3 h
Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)
Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)
Gọi vận tốc dự định của ô tô là x (km/h, x>10)
thời gian dự định ô tô đi là y (giờ, y>1 )
Quãng đường AB dài là: \(xy\left(km\right)\)
Nếu vận tốc tăng 20 km/giờ thì ô tô đến B sớm hơn dự định 1 giờ.
\(\Rightarrow\left(x+20\right).\left(y-1\right)=xy\)
\(\Leftrightarrow xy-x+20y-20=xy\)
\(\Leftrightarrow-x+20y=20\)(1)
Nếu vận tốc giảm bớt đi 10 km/giờ thì ô đến B chậm so với dự định 1 giờ
\(\Rightarrow\left(x-10\right).\left(y+1\right)=xy\)
\(\Leftrightarrow xy+x-10y-10=xy\)
\(\Leftrightarrow x-10y=10\)(2)
Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}-x+20y=20\\x-10y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10y=30\\x-10y=10\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=3\left(TM\right)\\x=40\left(TM\right)\end{cases}}\)
Vậy độ dài quãng đường AB là: \(40.3=120\left(km\right)\)
Đổi: \(1h24'=1,4h\).
Gọi thời gian dự định là \(x\left(h\right);x>1,4\).
vận tốc dự định là \(y\left(km/h\right),y>5\).
Quãng đường AB là: \(xy\left(km\right)\).
Nếu vận tốc tăng \(10km/h\)thì vận tốc là \(y+10\left(km/h\right)\), thời gian đi hết quãng đường khi đó là \(x-1,4\left(h\right)\).
Nếu vận tốc giảm \(5km/h\)thì vận tốc là \(y-5\left(km/h\right)\), thời gian đi hết quãng đường khi đó là: \(x+1\left(h\right)\).
Ta có hệ phương trình:
\(\hept{\begin{cases}\left(x-1,4\right)\left(y+10\right)=xy\\\left(x+1\right)\left(y-5\right)=xy\end{cases}}\Leftrightarrow\hept{\begin{cases}10x-1,4y-14=0\\-5x+y-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}10x-1,4y=14\\-10x+2y=10\end{cases}}\Leftrightarrow\hept{\begin{cases}0,6y=24\\x=\frac{14+1,4y}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=40\end{cases}}\)(thỏa mãn)
Vậy vận tốc dự định là \(40km/h\), quãng đường AB là \(40.7=280km\).