K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2020

\(\left(x+1\right)\left(x+3\right)=x^2+4\)

\(\Leftrightarrow x^2+4x+3=x^2+4\)

\(\Leftrightarrow x^2-x^2+4x=4-3\)

\(\Leftrightarrow4x=1\)

\(\Leftrightarrow x=\frac{1}{4}\)

\(\left(x-1\right)\left(x+3\right)=x^2+4\)

\(x^2+2x-3=x^2+4\)

\(x^2+2x-3-x^2-4=0\)

\(2x-7=0\)

\(2x=7\)

\(x=\frac{7}{2}\)

2 tháng 6 2018

⇔ ( x - 1 )( x + 2 )( 7 - 5x ) = 0

Bài tập: Phương trình tích | Lý thuyết và Bài tập Toán 8 có đáp án

Vậy phương trình có tập nghiệm là S = { - 2; 1; 7/5 }.

2 tháng 3 2021

1) `x^2+4-2(x-1)=(x-2)^2`

`<=>x^2+4-2x+2=x^2-4x+4`

`<=>-2x+2=-4x`

`<=>2x=-2`

`<=>x=-1`

.

2) ĐKXĐ: `x \ne \pm 3`

`(x+3)/(x-3)-(x-1)/(x+3)=(x^2+4x+6)/(x^2-9)`

`<=>(x+3)^2-(x-1)(x-3)=x^2+4x+6`

`<=>x^2+6x+9-x^2+4x-3=x^2+4x+6`

`<=>10x+6=x^2+4x+6`

`<=>x^2-6x=0`

`<=>x(x-6)=0`

`<=>x=0;x=6`

.

3) ĐKXĐ: `x \ne \pm 3`

`(3x-3)/(x^2-9) -1/(x-3 )= (x+1)/(x+3)`

`<=>(3x-3)-(x+3)=(x+1)(x-3)`

`<=> 2x-6=x^2-2x-3`

`<=>x^2-4x+3=0`

`<=>x^2-x-3x+3=0`

`<=>x(x-1)-3(x-1)=0`

`<=>(x-3)(x-1)=0`

`<=> x=3;x=1`

Vậy...

29 tháng 5 2018

Ta có: 3 x 2  + 4(x – 1) =  x - 1 2 + 3

⇔ 3 x 2  + 4x – 4 =  x 2  – 2x + 1 + 3

⇔ 2 x 2 + 6x – 8 = 0 ⇔  x 2  + 3x – 4 = 0

Phương trình  x 2  + 3x – 4 = 0 có hệ số a = 1, b = 3, c = -4 nên có dạng a + b + c = 0, suy ra  x 1  = 1,  x 2  = -4

Vậy phương trình đã cho có hai nghiệm  x 1  = 1,  x 2  = -4

30 tháng 12 2023

a)

\(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)-\left(3x+2\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left[\left(3x+2\right)\left(x-1\right)\right]\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left[9x^2-4-\left(3x^2-3x+2x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(9x^2-4-3x^2+3x-2x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(6x^2+x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\6x^2+x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(2x-1\right)\left(3x+2\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-2}{3}\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{1;\dfrac{-2}{3};\dfrac{1}{2}\right\}\)

b)

\(\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)

\(\Leftrightarrow x^2-2x+1-1+x^2=x+3-x^2-3x\)

\(\Leftrightarrow2x^2-2x=x^2-2x+3\)

\(\Leftrightarrow3x^2=3\)

\(\Leftrightarrow x^2=1\)

\(\Leftrightarrow x=\left(\pm1\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy \(x\in\left\{1;-1\right\}\)

15 tháng 1 2022

\(\dfrac{x-4}{x+2}+\dfrac{x+3}{x+4}=\dfrac{2x+1}{x^2+6x+8}\\ =\dfrac{x-4.2}{x+4}+\dfrac{x+3}{x+4}=\dfrac{2x+1}{x^2+6x+8}\\ =\dfrac{x-8+x+3}{x+4}=\dfrac{2x+1}{x^2+6x+8}\\ =\dfrac{2x-5}{x+4}=\dfrac{2x+1}{x^2+6x+8}\)

 

 

ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x}{x-2}+1=\dfrac{2x^2+3}{x^2-4}\)

\(\Leftrightarrow\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x^2+3}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+2x+x^2-4=2x^2+3\)

\(\Leftrightarrow2x-4=3\)

\(\Leftrightarrow2x=7\)

\(\Leftrightarrow x=\dfrac{7}{2}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{7}{2}\right\}\)

11 tháng 1 2022

\(a.\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right)\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1\right)=\left(3x-2\right)\left(3x+2\right)\left(x+1\right)\)

\(\Leftrightarrow x-1=3x-2\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

c: =>x-3=0

hay x=3

d: \(\Leftrightarrow\left(3x-1\right)\cdot\left(x^2+2-7x+10\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x-3\right)\left(x-4\right)=0\)

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

11 tháng 1 2022

 \(\left(3x+2\right)\left(x^2-1\right)=\left(9x^2-4\right)\left(x+1\right).\)

\(\Leftrightarrow\left(3x+2\right)\left(x-1\right)\left(x+1\right)-\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(x-1-3x+2\right)=0.\)

\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(-2x+1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0.\\x+1=0.\\-2x+1=0.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}.\\x=-1.\\x=\dfrac{1}{2}.\end{matrix}\right.\)

c: =>(x-3)(x2+3x+5)=0

=>x-3=0

hay x=3

d: =>(3x-1)(x2+2-7x+10)=0

=>(3x-1)(x-3)(x-4)=0

hay \(x\in\left\{\dfrac{1}{3};3;4\right\}\)

20 tháng 11 2019

a)

3 · x 2 + x 2 - 2 x 2 + x - 1 = 0 ( 1 )

Đặt  t   =   x 2   +   x ,

Khi đó (1) trở thành :  3 t 2   –   2 t   –   1   =   0   ( 2 )

Giải (2) : Có a = 3 ; b = -2 ; c = -1

⇒ a + b + c = 0

⇒ (2) có hai nghiệm  t 1   =   1 ;   t 2   =   c / a   =   - 1 / 3 .

+ Với t = 1  ⇒   x 2   +   x   =   1   ⇔   x 2   +   x   –   1   =   0   ( * )

Có a = 1; b = 1; c = -1  ⇒   Δ   =   1 2   –   4 . 1 . ( - 1 )   =   5   >   0

(*) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 3; b = 3; c = 1 ⇒   Δ   =   3 2   –   4 . 3 . 1   =   - 3   <   0

⇒ (**) vô nghiệm.

Vậy phương trình (1) có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

b)

x 2 − 4 x + 2 2 + x 2 − 4 x − 4 = 0 ⇔ x 2 − 4 x + 2 2 + x 2 − 4 x + 2 − 6 = 0 ( 1 )

Đặt  x 2   –   4 x   +   2   =   t ,

Khi đó (1) trở thành:   t 2   +   t   –   6   =   0   ( 2 )

Giải (2): Có a = 1; b = 1; c = -6

⇒  Δ   =   1 2   –   4 . 1 . ( - 6 )   =   25   >   0

⇒ (2) có hai nghiệm

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Với t = 2  ⇒   x 2   –   4 x   +   2   =   2

⇔   x 2   –   4 x   =   0

⇔ x(x – 4) = 0

⇔ x = 0 hoặc x = 4.

+ Với t = -3  ⇒   x 2   –   4 x   +   2   =   - 3

⇔ x2 – 4x + 5 = 0 (*)

Có a = 1; b = -4; c = 5  ⇒   Δ ’   =   ( - 2 ) 2   –   1 . 5   =   - 1   <   0

⇒ (*) vô nghiệm.

Vậy phương trình ban đầu có tập nghiệm S = {0; 4}.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Khi đó (1) trở thành:  t 2   –   6 t   –   7   =   0   ( 2 )

Giải (2): Có a = 1; b = -6; c = -7

⇒ a – b + c = 0

⇒ (2) có nghiệm  t 1   =   - 1 ;   t 2   =   - c / a   =   7 .

Đối chiếu điều kiện chỉ có nghiệm t = 7 thỏa mãn.

+ Với t = 7 ⇒ √x = 7 ⇔ x = 49 (thỏa mãn).

Vậy phương trình đã cho có nghiệm x = 49.

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇔   t 2   –   10   =   3 t   ⇔   t 2   –   3 t   –   10   =   0   ( 2 )

Giải (2): Có a = 1; b = -3; c = -10

⇒   Δ   =   ( - 3 ) 2   -   4 . 1 . ( - 10 )   =   49   >   0

⇒ (2) có hai nghiệm:

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

Cả hai nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình đã cho có tập nghiệm Giải bài 40 trang 57 SGK Toán 9 Tập 2 | Giải toán lớp 9

25 tháng 10 2018

(x – 1)4 = x2 – 2x + 3 (1)

(1)  ( x − 1 ) 2 2 = x 2 − 2 x + 3 ⇔ ( x 2 − 2 x + 1 ) 2 = x 2 − 2 x + 3

Đặt t = x2 – 2x + 1, t≥0, phương trình (2) trở thành  t 2 = t + 2 ⇔ t 2 − t − 2 = 0 ⇔ ( t − 2 ) ( t + 1 ) = 0

 ó t = 2 (tm) hoặc t = –1 (loại)

Với t = 2 có x 2 − 2 x + 1 = 2 ⇔ x 2 − 2 x − 1 = 0 ⇔ x = 1 ± 2

Vậy tập nghiệm của phương trình (1) là  1 − 2 ; 1 + 2