Bài 2: Tính:
a, (2a + b - 3c)2
b, (a + 2b + 3c - 4d)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,=(2a + b - 3c).(2a + b - 3c)
=4a\(^2\)+2ab-6ac+2ab+b\(^2\)-3bc-6ac-3cb+9c\(^2\)
=4a\(^2\)+b\(^2\)+9c\(^2\)+4ab
=2\(^2\).a\(^2\)+4ab+b\(^2\)+9c\(^2\)
=(2a+b)\(^2\)+9c\(^2\)( đáng lẽ chỗ này nó phải là -9c\(^2\) nhưng t ko ra đc )
b,=(a + 2b + 3c - 4d)(a + 2b + 3c - 4d)
=a\(^2\)+2ab+3ac-4ad+2ab+4b\(^2\)+6bc-8bd+3ac+6bc+9c\(^2\)-12cd-4ad-8bd-12cd+16d\(^2\)
=a\(^2\)+4b\(^2\)+9c\(^2\)+16d\(^2\)+4ab+6ac-8ad+12bc-16bd-24cd
=(a\(^2\)+4ab+4b\(^2\))+(9c\(^2\)-24cd+16d\(^2\))+6ac-8ad+12bc-16bd
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(3ac-4ad+6bc-8bd)
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2[a(3c-4d)+2b(3c-4d)]
=(a+2b)\(^2\)+(3c-4d)\(^2\)+2(a+2b)(3c-4d)
khiếp bài dài nghoằng ra ý :(
Cho a/b=c/d Với b/d khác +-3/2 . Chứng minh rằng:
a)2a+3c/2b+3d=2a-3c/2b-3d.
b)a^2+c^2/b^2+d^2=ac/bd
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,b=ck,c=dk\)
Ta có:
\(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{bk+ck-dk}{b+c-d}\right)^3=\left[\frac{k\left(b+c-d\right)}{b+c-d}\right]^3=k^3\) (1)
\(\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^2=\left(\frac{2bk+3ck-4dk}{2b+3c-4d}\right)^3=\left[\frac{k\left(2b+3c-4d\right)}{2b+3c-4d}\right]^3=k^3\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^3\) ( đpcm )
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{2a+3c}{3a+4c}=\dfrac{2bk+3dk}{3bk+4dk}=\dfrac{2b+3d}{3b+4d}\)
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó (2a + 3c)(2b - 3d)
= (2bk + 3dk)(2b - 3d)
= k(2b + 3d)(2b - 3d) (1)
(2a - 3c)(2b + 3d)
= (2bk - 2dk)(2b + 3d)
= k(2b - 3d)(2b + 3d) (2)
Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)
b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)
Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)
Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)
Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)
Câu 2 cũng tương tự nên tự làm đi
a: \(\left(2a+b-3c\right)^2\)
\(=4a^2+b^2+9c^2+4ab-12ac-6bc\)