Mọi người giải giùm em bài này với
Bai 1 : Cho hình chữ nhật ABCD có AB=8cm,BC=6cm. Vẽ BH vuông góc với AC (H thuộc AC)
a/Tính AC,BH
b/Tia BH cắt CD tại K. Chứng minh: CH.CA=CD.CK
c/ Chứng minh: BC^2=CK.CD
d/ Chứng minh AC là tia phân giác của góc BAD
a)
*Tính AC
Áp dụng định lí pytago vào ΔABC vuông tại B, ta được
\(AC^2=AB^2+BC^2\)
hay \(AC^2=8^2+6^2=100\)
⇒\(AC=\sqrt{100}=10cm\)
Vậy: AC=10cm
*Tính BH
Ta có: ΔABC vuông tại B(\(\widehat{ABC}=90^0\))
nên \(S_{ABC}=\frac{AB\cdot BC}{2}=\frac{8\cdot6}{2}=24cm^2\)
Ta có: BH là đường cao ứng với cạnh AC của ΔABC(gt)
⇒\(S_{ABC}=\frac{BH\cdot AC}{2}=\frac{BH\cdot10}{2}\)
mà \(S_{ABC}=24cm^2\)(cmt)
nên \(BH\cdot10=24cm^2\cdot2=48cm^2\)
⇒\(BH=\frac{48}{10}=4,8cm\)
Vậy: BH=4,8cm
b) Xét ΔHCK và ΔACD có
\(\widehat{CHK}=\widehat{ADC}\left(=90^0\right)\)
\(\widehat{ACD}\) chung
Do đó: ΔHCK\(\sim\)ΔACD(g-g)
⇒\(\frac{CH}{CD}=\frac{CK}{CA}\)
hay \(CH\cdot CA=CD\cdot CK\)(đpcm)(1)
c) Xét ΔBHC và ΔABC có
\(\widehat{BHC}=\widehat{ABC}\left(=90^0\right)\)
\(\widehat{ACB}\) là góc chung
Do đó: ΔBHC\(\sim\)ΔABC(g-g)
⇒\(\frac{BC}{CA}=\frac{CH}{BC}\)
hay \(CA\cdot CH=BC^2\)(2)
Từ (1) và (2) suy ra \(BC^2=CK\cdot CD\)