Cho \(S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+...+\frac{5}{49}\).CMR: 3<S<8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(S=5.\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)\)
\(S>5.\left(\frac{1}{49}+\frac{1}{49}+...+\frac{1}{49}\right)\)30 số hạng
\(S>5.\frac{30}{49}\)
\(S>\frac{150}{49}\)
\(S>3\frac{3}{49}\)
Suy ra \(S
Sửa đề : Chứng minh : S > 1
Ta thấy : \(\frac{5}{20}>\frac{5}{21}>\frac{5}{22}>\frac{5}{23}>\frac{5}{24}\)
\(\Rightarrow S=\frac{5}{20}+\frac{5}{21}+\frac{5}{22}+\frac{5}{23}+\frac{5}{24}>\frac{5}{24}\times5=\frac{25}{24}>1\)
Vậy S > 1 (ĐPCM)
\(S=\frac{5}{20}+\frac{5}{21}+..........+\frac{5}{49}\)
\(=5\left(\frac{1}{20}+\frac{1}{21}+.......+\frac{1}{49}\right)\)
Mà \(\frac{1}{20}>\frac{1}{49};\frac{1}{21}>\frac{1}{49};.........;\frac{1}{49}=\frac{1}{49}\)
\(\Leftrightarrow5\left(\frac{1}{20}+\frac{1}{21}+.....+\frac{1}{49}\right)>5\left(\frac{1}{49}+\frac{1}{49}+.......+\frac{1}{49}\right)\)
\(\Leftrightarrow S>5.\frac{30}{49}\)
\(\Leftrightarrow S>3\frac{3}{49}\)
\(\Leftrightarrow S>3\left(1\right)\)
Lại có :
\(\frac{1}{20}=\frac{1}{20};\frac{1}{21}< \frac{1}{20};.......;\frac{1}{49}< \frac{1}{20}\)
\(\Leftrightarrow S=5\left(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{49}\right)< 5\left(\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}\right)\)
\(\Leftrightarrow S< 5.\frac{30}{20}=7\frac{1}{2}\)
\(\Leftrightarrow S< 8\left(2\right)\)
Từ \(\left(1\right)+\left(2\right)\Leftrightarrow3< S< 8\)
https://olm.vn/hoi-dap/tim-kiem?q=+++++++++++Cho+s=5/20+5/21+5/22+5/23+...+5/49.ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:+3+%3C+s+%3C+8&id=376641
tham khảo nhé bn