Chứng minh rằng:
\(x^2\) +\(5y^2\) +2x - 4xy - 10y + 14 > 0 với mọi x, y.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Đặt \(A=x^2+5y^2+2x-4xy-10y+14\)
\(A=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+y^2-6y+9+4\)
\(A=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)
\(A=\left(x-2y+1\right)^2+\left(y-3\right)^2+4\ge4>0\)
\(\Rightarrow A>0\left(đpcm\right)\)
a/ \(x^2+xy+y^2+1\)=\(\left(x^2+2x\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
=\(\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\) \(\ge\)0
vậy....
b
Câu hỏi của KiKyo - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo nhé!
Ta có : \(x^2+5y^2+2x-4xy-10y+14\)
\(=x^2+2x\left(1-2y\right)+\left(1-2y\right)^2-\left(1-2y\right)^2+5y^2-10y+14\)
\(=\left(x-2x+1\right)^2-1-4y^2+4y+5y^2-10y+14\)
\(=\left(x-2x+1\right)^2+y^2-6y+9+4\)
\(=\left(x-2x+1\right)^2+\left(y-3\right)^2+4\ge4>0\) (đpcm)
Ta có: x2 + 5y2 + 2x - 4xy - 10y + 14
= (x2 - 4xy + 4y2) + (2x - 4y) + 1 + (y2 - 6y + 9) + 4
= (x - 2y)2 + 2(x - 2y) + 1 + (y - 3)2 + 4
= (x - 2y + 1)2 + (y - 3)2 + 4 > 0 \(\forall\)x; y
Do (x - 2y + 1)2 \(\ge\)0; (y - 3)2 \(\ge\)0 ; 4 > 0