Cho a, b, c ≥ 0 thoả mãn a+b+c=1. Cmr: \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a;b;c\ge0;a+b+c=1\Rightarrow a;b;c\le1\)
\(\Rightarrow\left\{{}\begin{matrix}a^2\le a\\b^2\le b\\c^2\le c\end{matrix}\right.\)
\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)
\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=\sqrt{\left(a+2\right)^2}+\sqrt{\left(b+2\right)^2}+\sqrt{\left(c+2\right)^2}\)
\(=a+b+c+2+2+2=7\)
\("="\Leftrightarrow a;b;c\) là hoán vị của (0;0;1)
nè Cho a, b, c là ba số thực không âm và thỏa mãn a + b + c = 1. Chứng minh rằngcăn(5a + 4) + căn(5b + 4) + căn(5c + 4) >= 7- Mạng Giáo Dục Pitago.Vn – Giải pháp giúp em học toán vững vàng!
Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)
\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)
\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)
\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1
Do \(a,b,c\geq 0\) và \(a+b+c=1\) nên \(a,b,c\le1\).
Xét hiệu \(5a+4-\left(a+2\right)^2=a\left(1-a\right)\ge0\)
\(\Rightarrow5a+4\ge\left(a+2\right)^2\)
\(\Rightarrow\sqrt{5a+4}\ge a+2\).
Tương tự, \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\).
Cộng vế với vế ta có \(T\ge a+b+c+6=7\).
Đẳng thức xảy ra khi a = 1; b = c = 0 và các hoán vị.
Vậy Min T = 7 khi a = 1; b = c = 0.
Một ý tưởng để có được bất đẳng thức phụ \(\sqrt{5a+4}\ge a+2\forall0\le a\le1.\)
Do $0\leq a \leq 1$ nên $a\ge a^2.$
Ta có: \(\sqrt{5a+4}=\sqrt{a+4a+4+\ 4}\ge\sqrt{a^2+4a+4+4}=a+2\)
Ngoài ra còn một cách là giả sử \(\sqrt{5a+4}\ge ma+n\)
rồi đi chọn $m,n$ theo điểm rơi.
Không biết còn cách nào khác không nhỉ?
Tìm trước khi hỏi :
Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Witch Rose
Vì a,b,ca,b,c không âm và a+b+c=1a+b+c=1 nên 2≤t=√5c+4≤32≤t=5c+4≤3
Ta có:a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16a,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16
⇔(5a+4)(5b+4)≥4(5a+5b+4)⇔(5a+4)(5b+4)≥4(5a+5b+4)
⇔(√5a+4+√5b+4)2≥(2+√5a+5b+4)2⇔(5a+4+5b+4)2≥(2+5a+5b+4)2
⇔√5a+4+√5b+4≥2+√9−5c=2+√13
bài này sai đề vì ta làm dấu bằng xảy ra khi a=b=c=\(\frac{1}{3}\).sau đó thay vào biểu thức cần cm thì sẽ thấy vô lí
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Vì a,b,c không âm và có tổng bằng 1 nên
\(0\le a,b,c\le\left\{{}\begin{matrix}a\left(1-a\right)\ge0\\b\left(1-b\right)\ge0\\c\left(1-c\right)\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ge a^2\\b\ge b^2\\c\ge c^2\end{matrix}\right.\)
Suy ra \(\sqrt{5a+4}\ge\sqrt{a^2+4a+4}=\sqrt{\left(a+2\right)^2}=a+2\)
Tương tự ta có: \(\sqrt{5b+4}\ge b+2;\sqrt{5c+4}\ge c+2\)
Do đó: \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge\left(a+b+c\right)+6=7\) (điều phải chứng minh)
Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)
\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)
\(=2a+1+2b+1+2c+1=7\) .
Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị
À sorry mình nhầm .
\(VT=\sum\sqrt{4a+4+1}\ge\sum\sqrt{a^2+4a+4}=a+2+b+2+c+2=7\)