Nhìn hình chứng minh:
a) Chứng minh AM = CN.
b) Chứng minh tứ giác DMBN là hình bình hành.
c) Gọi H, K lần lượt là hình chiếu của M và N trên BN và DM. Chứng minh hai đoạn thẳng AC và MN cắt nhau tại trung điểm mỗi đường.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
a: Xét ΔADM và ΔCBN có
\(\widehat{ADM}=\widehat{CBN}\)
AD=CB
\(\widehat{A}=\widehat{C}\)
Do đó: ΔADM=ΔCBN
Suy ra: AM=CN
a: ABCD là hình bình hành
=>AC cắt BD tại trung điểm của mỗi đường
mà O là trung điểm của AC
nên O là trung điểm của BD
Xét ΔMDO và ΔBNO có
\(\widehat{MDO}=\widehat{NBO}\)
OD=OB
\(\widehat{MOD}=\widehat{NOB}\)
Do đó: ΔMDO=ΔBNO
=>MD=BN
b: Xét tứ giác DMBN có
DM//BN
DM=BN
Do đó: DMBN là hình bình hành
c; DMBN là hình bình hành
=>DB cắt MN tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của MN
cccccccccccccccccccccccccccccccuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuutttttttttttttttttttttttttttttttttttt