cho x,y là 2 số dương và x2010+y2010=x2011+y2011=x2012+y2012 .Tính giá trị của biểu thức S=x2020+y2020
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)
\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow x^{2010}+x^{2012}-2x^{2011}+y^{2010}+y^{2012}-2y^{2011}=0\)
\(\Leftrightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
\(x^{2010};y^{2010}>0\Leftrightarrow x=y=1.\Rightarrow x^{2016}+y^{2016}=2\)
...................................................................................................................
Ta có:
\(Q\left(x\right)=\left[x^{1010}\left(x+3\right)-1\right]^{2012}=\left[x^{1010}.0-1\right]^{2012}=\left(-1\right)^{2012}=1\)
Ta có: \(\left\{{}\begin{matrix}x^2+2y+1=0\\y^2+2z+1=0\\z^2+2x+1=0\end{matrix}\right.\)
\(\Rightarrow x^2+2y+1+y^2+2z+1+z^2+2x+1=0\)
\(\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2=0\)
\(\Rightarrow x=y=z=-1\)(do \(\left(x+1\right)^2,\left(y+1\right)^2,\left(z+1\right)^2\ge0\forall x,y,z\))
a) \(A=x^{2020}+y^{2020}+z^{2020}=\left(-1\right)^{2020}+\left(-1\right)^{2020}+\left(-1\right)^{2020}=1+1+1=3\)
b) \(B=\dfrac{1}{x^{2020}}+\dfrac{1}{y^{2020}}+\dfrac{1}{z^{2020}}=\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}+\dfrac{1}{\left(-1\right)^{2020}}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}=3\)
x1+x2+x3+...+x2011=0
x1+x2=x3+x4=...=x2009+x2010=2
(x1+x2)+(x3+x4)+...+(x2009+x2010)+x2011=0
2+2+2+...+2+x2011=0
2.1005+x2011=0
2010+x2011=0
x2011=0-2010
x2011=-2010
Xong rồi, kick mình nha, như lời hứa ở trong tin nhắn của bạn!
Đặt biểu thức là A
Ta có \(x_1+x_2+x_3+..+x_{2009}+x_{2010}+x_{2011}=0\)
\(< =>\left(x_1+x_2+x_3\right)+\left(x_4+x_5+x_6\right)+..+\left(x_{2008}+x_{2009}+x_{2010}\right)+x_{2011}=0\)
\(< =>2+2+2+..+2+x_{2011}=0\)
Biểu thức trên có tất cả số số 2 là: \(\frac{2010-1+1}{3}=670\)(số)
Nên ta có: \(2.670+x_{2011}=0\)
\(< =>1340+x_{2011}=0\)
\(< =>x_{2011}=-1340\)
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x2011 = 0. Vậy x2011 = -2010
Ta có: ( x 1 + x 2 ) + ( x 3 + x 4 ) + ... + ( x 2009 + x 2010 )
= 2 + 2 + ... + 2 ( 1005 số hạng)
⇒ x 1 + x 2 + x 3 + ... + x 2009 + x 2010 = 2010
Mà x 1 + x 2 + x 3 + ... + x 2011 = 0
Nên 2010 + x 2011 = 0. Vậy x 2011 = -2010
ta có
\(x_1+x_2+x_3+..+x_{2011}=0\)
\(\left(x_1+x_2\right)+\left(x_3+x_4\right)+..+\left(x_{2009}+x_{2010}\right)+x_{2011}=0\)
\(\Leftrightarrow2+2+..+2+x_{2011}=0\Leftrightarrow2.1005+x_{2011}=0\)
\(\Leftrightarrow x_{2011}=-2010\)
\(M=x^{2023}-2023.\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)
Ta có : \(x=2022\Rightarrow x+1=2023\)
\(\Rightarrow M=x^{2023}-\left(x+1\right).\left(x^{2022}-x^{2021}+x^{2020}-x^{2019}+...+x^2-x\right)\)
\(\Rightarrow M=x^{2023}-\left(x+1\right)x^{2022}+\left(x+1\right)x^{2021}-\left(x+1\right)x^{2020}+\left(x+1\right)x^{2019}+...-\left(x+1\right)x^2+\left(x+1\right)x\)
\(\Rightarrow M=x^{2023}-x^{2023}-x^{2022}+x^{2022}+x^{2021}-x^{2021}-x^{2020}+x^{2020}+x^{2019}-x^{2019}-...-x^3-x^2+x^2+x\)
\(\Rightarrow M=x\)
\(\Rightarrow M=2022\)
Vậy \(M=2022\left(tạix=2022\right)\)
Sửa đề: \(P=x^{2008}+y^{2009}+z^{2010}\)
Ta có: x+y+z=1
nên \(\left(x+y+z\right)^3=1\)
\(\Leftrightarrow x^3+y^3+z^3+3\left(x+y\right)\left(y+z\right)\left(x+z\right)=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(z+x\right)+1=1\)
\(\Leftrightarrow3\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
mà 3>0
nên \(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\x=-z\end{matrix}\right.\)
Thay x=-y vào biểu thức \(x+y+z=1\), ta được:
\(-y+y+z=1\)
hay z=1
Thay x=-y và z=1 vào biểu thức \(x^2+y^2+z^2=1\), ta được:
\(\left(-y\right)^2+y^2+1=1\)
\(\Leftrightarrow y^2+y^2=0\)
\(\Leftrightarrow2y^2=0\)
hay y=0
Vì x=-y
và y=0
nên x=0
Thay x=0; y=0 và z=1 vào biểu thức \(P=x^{2008}+y^{2009}+z^{2010}\), ta được:
\(P=0^{2008}+0^{2009}+1^{2010}=1\)
Vậy: P=1
nma ở trên cm y=-z mà. Nếu ở thay y=0 và z=1 vào thì nghĩa là 0 = -1 hả
\(x^{2010}+y^{2010}=x^{2011}+y^{2011}=x^{2012}+y^{2012}\)
\(\Leftrightarrow\left(x^{2012}+x^{2010}-2x^{2011}\right)+\left(y^{2012}+y^{2010}-2y^{2011}\right)=9\)\(\rightarrow x^{2010}\left(x^2-2x+1\right)+y^{2010}\left(y^2-y+1\right)=0\)
\(\Leftrightarrow x^{2010}\left(x-1\right)^2+y^{2010}\left(y-1\right)^2=0\)
Do x;y dương => x=y=1