Giải pt sau: \(\frac{x-6}{2010}+\frac{x-603}{471}+\frac{x-1}{403}=9\)9
tìm GTNN của M=(x-1)(x+2)(x+3)(x+6)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: x≠0
Ta có: \(\frac{9}{x}+2=-6\)
⇔\(\frac{9}{x}+2+6=0\)
⇔\(\frac{9}{x}+8=0\)
⇔\(\frac{9}{x}+\frac{8x}{x}=0\)
⇔9+8x=0
⇔8x=-9
hay \(x=-\frac{9}{8}\)
Vậy: \(x=-\frac{9}{8}\)
b) ĐKXĐ: x≠0;x≠-1;x≠-3
Ta có: \(\frac{7}{x+1}+\frac{-18x}{x\left(x^2+4x+3\right)}=\frac{-4}{x+3}\)
⇔\(\frac{7}{x+1}+\frac{-18x}{x\left(x+1\right)\left(x+3\right)}-\frac{-4}{x+3}=0\)
⇔\(\frac{7x\left(x+3\right)}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}+\frac{-18x}{\left(x+1\right)\cdot x\cdot\left(x+3\right)}-\frac{-4x\left(x+1\right)}{\left(x+3\right)\cdot x\cdot\left(x+1\right)}=0\)
⇔\(7x^2+21x-18x+4x\left(x+1\right)=0\)
\(\Leftrightarrow7x^2+21x-18x+4x^2+4x=0\)
⇔\(11x^2+7x=0\)
\(\Leftrightarrow x\left(11x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\11x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\11x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=\frac{-7}{11}\end{matrix}\right.\)
Vậy: \(x=\frac{-7}{11}\)
c) ĐKXĐ: x≠1; x≠-3
Ta có: \(\frac{3x-1}{x-1}-1=\frac{2x+5}{x+3}+\frac{4}{x^2-2x+3}\)
⇔\(\frac{3x-1}{x-1}-1-\frac{2x+5}{x+3}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\frac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
⇔\(\left(3x-1\right)\left(x+3\right)-\left(x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)-4=0\)
\(\Leftrightarrow3x^2+9x-x-3-\left(x^2+3x-x-3\right)-\left(2x^2-2x+5x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-\left(x^2+2x-3\right)-\left(2x^2+3x-5\right)-4=0\)
\(\Leftrightarrow3x^2+8x-3-x^2-2x+3-2x^2-3x+5-4=0\)
\(\Leftrightarrow3x+1=0\)
\(\Leftrightarrow3x=-1\)
hay \(x=\frac{-1}{3}\)
Vậy: \(x=\frac{-1}{3}\)
1) Ta có: x-4=2x+4
\(\Leftrightarrow x-4-2x-4=0\)
\(\Leftrightarrow-x-8=0\)
\(\Leftrightarrow-x=8\)
hay x=-8
Vậy: S={8}
2) Ta có: \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)
\(\Leftrightarrow\frac{3\left(2x-1\right)}{6}-\frac{2x}{6}=\frac{6x}{6}-\frac{x}{6}\)
\(\Leftrightarrow3\left(2x-1\right)-2x-6x+x=0\)
\(\Leftrightarrow6x-3-2x-6x+x=0\)
\(\Leftrightarrow-x-3=0\)
\(\Leftrightarrow-x=3\)
hay x=-3
Vậy: S={-3}
3) ĐKXĐ: \(x\notin\left\{\frac{-1}{2};3\right\}\)
Ta có: \(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{\left(x+3\right)\left(x-3\right)}{\left(2x+1\right)\left(x-3\right)}-\frac{x\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)
Suy ra: \(x^2-9-\left(2x^2+x\right)-3x^2-x-9=0\)
\(\Leftrightarrow-2x^2-x-18-2x^2-x=0\)
\(\Leftrightarrow-4x^2-2x-18=0\)
\(\Leftrightarrow-4\left(x^2+\frac{1}{2}x+\frac{4}{5}\right)=0\)
\(\Leftrightarrow x^2+\frac{1}{2}x+\frac{4}{5}=0\)
\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{59}{80}=0\)
\(\Leftrightarrow\left(x+\frac{1}{4}\right)^2+\frac{59}{80}=0\)(vô lý)
Vậy: S=\(\varnothing\)
4) Ta có: \(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)
\(\Leftrightarrow\frac{4x}{6}+\frac{2x-1}{6}=\frac{24}{6}-\frac{2x}{6}\)
\(\Leftrightarrow4x+2x-1=24-2x\)
\(\Leftrightarrow6x-1-24+2x=0\)
\(\Leftrightarrow8x-25=0\)
\(\Leftrightarrow8x=25\)
hay \(x=\frac{25}{8}\)
Vậy: \(S=\left\{\frac{25}{8}\right\}\)
ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)
PT ban đầu
\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)
Chúc bạn học tốt nha.
Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)
Chúc bạn học tốt nha.
Bài 1:
a: \(\Leftrightarrow\left(x-1\right)\left(x-3\right)-x\left(x+3\right)=-7x+3\)
\(\Leftrightarrow x^2-4x+3-x^2-3x+7x-3=0\)
=>0x=0(luôn đúng)
Vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
b: \(\Leftrightarrow2x+3< 6-3+4x\)
=>2x+3<4x+3
=>-2x<0
hay x>0
1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)
=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)
=> \(9x+27+6=20x+36-21x+27\)
=> \(9x-20x+21x=27-27-6+36\)
=> \(10x=30\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)
=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
=> \(20x-30-5x+15=24x+18-510\)
=> \(20x-5x-24x=18-510+30-15\)
=> \(-9x=-477\)
=> \(x=53\)
Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)
3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)
=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)
=> \(150x-30+40x+160=84x-60+180x-180\)
=> \(150x+40x-180x-84x=-60-180-160+30\)
=> \(-74x=-370\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
\(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi \(x\in\left\{0;-5\right\}\)
Giải PT \(\frac{x-6}{2010}+\frac{x-603}{471}+\frac{x-1}{403}=9\)
\(\Leftrightarrow\frac{x-6}{2010}+\frac{x-603}{471}+\frac{x-1}{403}-9=0\)
\(\Leftrightarrow\left(\frac{x-6}{2010}-1\right)+\left(\frac{x-603}{471}-3\right)+\left(\frac{x-1}{403}-5\right)=0\)
\(\Leftrightarrow\frac{x-2016}{2010}+\frac{x-2016}{471}+\frac{x-2016}{403}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2010}+\frac{1}{471}+\frac{1}{403}\right)=0\)
Mà \(\left(\frac{1}{2010}+\frac{1}{471}+\frac{1}{403}\right)\ne0\)
\(\Leftrightarrow x-2016=0\Leftrightarrow x=2016\)
Vậy x=2016
b) \(M=\left(x-1\right)\left(x+2\right).\left(x+3\right)\left(x+6\right)\)
\(M=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]\)
\(M=\left(x^2+5x-6\right).\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\)
Các bạn tự làm tiếp được rồi nhé