K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Ta thấy : \(\frac{1}{4^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{2006^2}< \frac{1}{2005.2006}\)

\(\Rightarrow B=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2006^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)

\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{2006}=\frac{1001}{4012}\)

Mà \(\frac{1001}{4012}< \frac{334}{2007}\Rightarrow B< \frac{334}{2007}\)

2 tháng 3 2020

\(B< \frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)

\(2B< \frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{4}-\frac{1}{2008}=\frac{501}{2008}\)\(B< \frac{501}{4016}< \frac{501}{4014}< \frac{668}{4014}=\frac{334}{2007}\)

Vậy:.....

25 tháng 2 2016

mik sẽ trả lời pạn sau nhé ..sorry mik pạn ti......

13 tháng 3 2017

Mai ơi! bạn khùng hả? ko trả lời thì thôi lại còn vào chỗ trả lời để sorry

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

30 tháng 1 2017

1/ Ta có: \(\frac{x^4}{1a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)

\(\Leftrightarrow1bx^4\left(a+b\right)+ay^4\left(a+b\right)=ab\left(x^4+2x^2y^2+y^4\right)\)

 \(\Leftrightarrow\left(ay^2-bx^2\right)^2=0\)

\(\Rightarrow\frac{x^2}{1a}=\frac{y^2}{b}=\frac{\left(x^2+y^2\right)}{a+b}=\frac{1}{a+b}\)

\(\Rightarrow\frac{x^{2006}}{1a^{1003}}=\frac{y^{2006}}{b^{1003}}=\frac{1}{\left(a+b\right)^{1003}}\)

 \(\Rightarrow\frac{x^{2006}}{a^{1003}}+\frac{y^{2006}}{b^{1003}}=\frac{2}{\left(a+b\right)^{1003}}\)

9 tháng 5 2017

Ta có
\(\frac{1}{2^2}< \frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2}-\frac{1}{3}\)
\(........\)
\(\frac{1}{8^2}< \frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{8^2}< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
Mà \(\frac{3}{8}< 1\)
\(\Rightarrow B< 1\)

9 tháng 5 2017

Đặt A =\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)

\(\frac{1}{2^2}< \frac{1}{1\cdot2}\)

\(\frac{1}{3^2}< \frac{1}{2\cdot3}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}...+\frac{1}{7}-\frac{1}{8}\)

\(A=1-\frac{1}{8}< 1\)

\(\Leftrightarrow B< A< 1\)

14 tháng 8 2018

Ta có 

B = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{3^2}+...+\frac{1}{8^2}\)    \(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)\(1-\frac{1}{8}< 1\)

14 tháng 8 2018

đúng không đấy mình thấy cứ sai sai thế nào ý

mũ hai nhưng \(8^2\) mới lập lại 1 lần

Thank nhưng mình cần kiểm tra lại 

11 tháng 12 2016

1/ \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right|\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=0\)

\(\Leftrightarrow\frac{a+b+c}{abc}=0\)(đúng)

Vậy ta có ĐPCM

11 tháng 12 2016

2/ \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2005}+\sqrt{2006}}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2006}-\sqrt{2005}\)

\(=\sqrt{2006}-1\)