tìm các cặp số nguyên thỏa mãn: 2x^2 - xy + 3x -2x = 5
Các bạn giúp mình với :(
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x+xy-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y=8\)
\(\Leftrightarrow x.\left(1+y\right)-y-1=8-1\)
\(\Leftrightarrow x.\left(1+y\right)-\left(1+y\right)=7\)
\(\Leftrightarrow\left(1+y\right).\left(x-1\right)=7\)
Lập bảng tìm tiếp
b) Ta có: \(\hept{\begin{cases}\left(x+2\right)^2\ge0\forall x\\\left(2y-6\right)^4\ge0\forall x\end{cases}}\)
\(\Rightarrow\left(x+2\right)^2+\left(2y-6\right)^4\ge0\forall x\)
Do đó \(\left(x+2\right)^2+\left(2y-6\right)^4=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(2y-6\right)^4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}}\)
Vậy ...
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)
=> 12 chia hết cho 2x+1
=> 2x+1 thuộc Ư(12)={1;2;3;4;6;12;-1;-2;-3;-4;-6;-12}
mà 2x+1 không chia hết 2
=> 2x+1 thuộc -1;1;-3;3
=> x thuộc -1 ; 0 ; -2 ; 1
\(x^2+y^2+4=xy+2y+2x\)
\(\Leftrightarrow2x^2+2y^2+8=2xy+4x+4y\)
\(\Leftrightarrow2x^2+2y^2+8-2xy-4x-4y=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2=0\)
Ta có:
\(\left(x-y\right)^2\ge0\forall x;y\)
\(\left(x-2\right)^2\ge0\forall x\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow\left(x-y\right)^2+\left(y-2\right)^2+\left(x-2\right)^2\ge0\forall x;y\)
Dấu bằng xảy ra
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y-2=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=2\\x=2\end{cases}}\Leftrightarrow x=y=2\)
Vậy phương trình có nghiệm (x;y) =(2;2)
\(2x^2-xy+3x-2x=5\)
\(2x^2-xy+1x=5\)
\(xy=2x^2-x-5\)
\(x\left(2x-y+1\right)=5\)
\(\Rightarrow x=5\)
\(\Rightarrow y=\frac{2x^2+x+5}{x}\Rightarrow\frac{2.25+5+5}{5}=12\)
\(\Rightarrow y=12\)
Vậy \(\left(x;y\right)=\left(5;12\right)\)
con mấy cặp lười tìm :v
== tiếc qus
\(\Rightarrow y=\frac{2x^2+x-5}{x}\Rightarrow\frac{2.25+5-5}{5}=10\)
\(\Rightarrow y=10\)
Vậy \(\left(x;y\right)=\left(5;10\right)\)