Tìm các số nguyên x và y sao cho:
a) ( x+ 2)( y− 1) = 3
b) (3 − x)(xy + 5) = −1
giúp mình giải với !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: 5/x-y/3=1/6
=>\(\dfrac{15-xy}{3x}=\dfrac{1}{6}\)
=>\(\dfrac{30-2xy}{6x}=\dfrac{x}{6x}\)
=>30-2xy=x
=>x(2y+1)=30
=>(x;2y+1) thuộc {(30;1); (-30;-1); (10;3); (-10;-3); (6;5); (-6;-5)}
=>(x,y) thuộc {(30;0); (-30;-1); (10;1); (-10;-2); (6;2); (-6;-3)}
b: x/6-2/y=1/30
=>\(\dfrac{xy-12}{6y}=\dfrac{1}{30}\)
=>\(\dfrac{5xy-60}{30y}=\dfrac{y}{30y}\)
=>5xy-60=y
=>y(5x-1)=60
=>(5x-1;y) thuộc {(-1;-60); (4;15); (-6;-10)}(Vì x,y là số nguyên)
=>(x,y) thuộc {(0;-60); (1;15); (-1;-10)}
`a)`
Có `x;y` TLN theo công thức `xy=10`
`=>x=10/y`
vậy hệ số tỉ lệ là `10`
`b)`
Thay `x=5` vào `x=10/y` ; ta đc :
`5=10/y`
`=>y=2`
Vậy nếu `x=5` thì `y=2`
Thay `x=-1` vào `x=10/y` ta đc :
`-1=10/y`
`y=-10`
Vậy nếu `x=-1` thì `y=-10`
a: \(x\in\left\{-6;-5;-4;-3;-2;-1;0;1;2;3\right\}\)
c: \(x\in\left\{-4;-3;-2;-1\right\}\)
a )
(x-3).(2y+1)=7
(x-3).(2y+1)= 1.7 = (-1).(-7)
Cứ cho x - 3 = 1 => x= 4
2y + 1 = 7 => y = 3
Tiếp x - 3 = 7 => x = 10
2y + 1 = 1 => y = 0
x-3 = -1 ...
1.tìm các số nguyên x và y sao cho:
(x-3).(2y+1)=7
Vì x;y là số nguyên =>x-3 ; 2y+1 là số nguyên
=>x-3 ; 2y+1 C Ư(7)
ta có bảng:
x-3 | 1 | 7 | -1 | -7 |
2y+1 | 7 | 1 | -7 | -1 |
x | 4 | 10 | 2 | -4 |
y | 3 | 0 | -4 | -1 |
Vậy..............................................................................
2.tìm các số nguyên x và y sao cho:
xy+3x-2y=11
x.(y+3)-2y=11
x.(y+3)-y=11
x.(y+3)-(y+3)=11
(x-1)(y+3)=11
Vì x;y là số nguyên => x-1;y+3 là số nguyên
=> x-1;y+3 Thuộc Ư(11)
Ta có bảng:
x-1 | 1 | 11 | -1 | -11 |
y+3 | 11 | 1 | -11 | -1 |
x | 2 | 12 | 0 | -10 |
y | 8 | -2 | -14 | -4 |
Vậy.......................................................................................
Câu 2:
a: \(\Leftrightarrow x+2\in\left\{3;9\right\}\)
hay \(x\in\left\{1;7\right\}\)
\(a,\dfrac{x}{5}=-\dfrac{3}{y}\Rightarrow xy=-15\\ \Rightarrow xy=-1\cdot15=-15\cdot1=-5\cdot3=-3\cdot5\\ \Rightarrow\left(x;y\right)=\left\{\left(-1;-15\right);\left(1;-15\right);\left(15;-1\right);\left(-15;1\right);\left(3;-5\right);\left(-5;3\right);\left(5;-3\right);\left(-3;5\right)\right\}\)\(g,-\dfrac{11}{x}=\dfrac{y}{3}\\ \Rightarrow xy=-33\\ \Rightarrow xy=-3\cdot11=-11\cdot3=-1\cdot33=-33\cdot1\\ \Rightarrow\left(x;y\right)=\left\{\left(-3;11\right);\left(11;-3\right);\left(-11;3\right);\left(3;-11\right);\left(-1;33\right);\left(33;-1\right);\left(-33;1\right);\left(1;-33\right)\right\}\)
a: \(\left(x,y\right)\in\left\{\left(1;2\right);\left(-1;-2\right);\left(2;1\right);\left(-2;-1\right)\right\}\)
\(\left(x+2\right)\left(y-1\right)=3\)
Vì x,y nguyên => x+2; y-1 nguyên
=> x+2; y-1 \(\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Ta có bảng giá trị
a) \(\left(x+2\right)\left(y-1\right)=3\)
Do đó \(\left(\left[x+2\right],\left[y-1\right]\right)\)là các hoán vị của \(\left(\pm1;\pm3\right)\)
Xét TH ([x+2],[y-1])=(1,3)
x+2 = 1 => x= -1
y-1 = 3 => y = 4
Tương tự với các TH còn lại nhé bạn,phương pháp là bạn phân tích thừa số nguyên tố ra rồi tính